
Kevin Loughlin
Stefan Saroiu, Alec Wolman, Yatin A. Manerkar, Baris Kasikci

1

MOESI-prime: Preventing
Coherence-Induced Hammering

in Commodity Workloads

• Frequent ACTs of same DRAM row(s) can corrupt data in nearby rows
• ACT rate above RH threshold (ex: 20,000 ACTs/64 ms) can flip bits

What is Rowhammer (RH)?

DRAM BANK

C0 C1 C2 C3

R0 0 1 1 0

R1 1 1 0 1

R2 1 0 1 1

R3 0 1 0 0

2

DRAM BANK

C0 C1 C2 C3

R0 0 1 1 0

R1 1 1 0 1

R2 1 0 1 1

R3 0 1 0 0

Activate
row

Read/write
column within

row buffer
ROW BUFFER

R1 1 1 0 1

ROW BUFFER

R2 1 1 0 1

Activate
x20,000

DRAM BANK

C0 C1 C2 C3

R0 0 1 1 0

R1 1 1 0 1

R2 1 1 1 0

R3 0 1 0 0

BIT FLIP(S)
in nearby row(s)

Commodity Workloads: Dangerous ACT Rates

• Prior Work: Decreasing RH thresholds (fewer ACTs needed to flip bits)
• Carefully-crafted, malicious code known to pose increasing danger

• Coherence-induced hammering
• Common, non-malicious code can also yield dangerous ACT rates

• MOESI-prime coherence protocol
• Mitigates coherence-induced hammering

3

Key Contribution #1

Motivation

Key Contribution #2

Outline

• Background: Rowhammer, ccNUMA

• Problem: Coherence-Induced Hammering

• Mitigation: MOESI-prime

• Evaluation and Takeaways

4

Malicious Hammering

• Ex: repeatedly flush cache line in aggressor row to force DRAM accesses

• Worst-case: every DRAM access requires row ACT
• Additional techniques/conditions increase likelihood of row ACT

5

DRAM BANK

C0 C1 C2 C3

R0 0 1 1 0

R1 1 1 0 1

R2 1 0 1 1

R3 0 1 0 0

Victim Row

DRAM BANK

C0 C1 C2 C3

R0 0 1 1 0

R1 1 1 0 1

R2 0 0 0 1

R3 0 1 0 0

Aggressor Row

BIT FLIP(S)
in victim row

1 while(true)

2 flush(row1_addr)

3 read(row1_addr)

ccNUMA Can Change DRAM Access Frequency

• ccNUMA: cache coherency across multiple nodes (ex: sockets)
• Each cache line has a single “local” node

• Remote LLC miss: go to local node
• Local LLC miss: check memory directory…

6

Single-Node Point of Coherence

Node 0

Core A Core B

L1+L2 L1+L2

LLC 0

Node 1

Core A Core B

L1+L2 L1+L2

LLC 1ccNUMA (Multi-Node) Point of Coherence

DRAM 0 DRAM 1

NUMA
interconnect

LOCAL

Core A Core B

L1+L2 L1+L2

LLC 0

REMOTE

Core A Core B

L1+L2 L1+L2

LLC 1

State-of-the-Art ccNUMA: Multiple Directories

• Directories track cache line ownership across cores
• Ex: is a core’s copy of a cache line Modified, Invalid, etc.?

• Separate directories track local/remote ownership

7

Insight: memory directory state is only
meaningful if local node isn’t owner

LLC-level directory: local node ownership

Memory directory: remote node ownership DRAM 0

NUMA
interconnect

LOCAL

Core A Core B

L1+L2 L1+L2

LLC 0

REMOTE

Core A Core B

L1+L2 L1+L2

LLC 1

Memory Directory Implementation

• Each cache line’s remote state co-located with line in DRAM

• For today, two important memory directory states…
• A: snoop-All: line might be owned (dirty) on a remote node
• I: remote-Invalid: line not valid on any remote node

Cache Line + Memory Directory State Bits (Not to Scale)

Data Bits (512) Dir Bits (2)

8

Memory directory: remote node ownership

Outline

• Background: Rowhammer, ccNUMA

• Problem: Coherence-Induced Hammering

• Mitigation: MOESI-prime

• Evaluation and Takeaways

9

Identifying Coherence-Induced Hammering

• Platform: Intel dual-socket Skylake server (ccNUMA)
• Used DDR4 bus analyzer to record memory traces

• Ran commodity workloads on single node and two nodes
• Measured highest ACT rate observed for single row within 64 ms (DDR4)
• Compared to RH threshold of 20,000 ACTs

• Ran additional micro-benchmarks to isolate hammering sources
• See paper

10

"�"������ (�&�'$&(

��

�
�

���

�
�

���

�

��

�
�

�
�+

��
��

'	
��

�"
'�

��
 #

�!
��

�$
*

�

�)&&�#(��)()&�
�!$*�&�����'
")!(�#$��
' #�!��#$��

%&$���$#'
" �&���� &�

" �&����&$���

�
�

�

�

��
�

�

�

��
�

�

�
�

�

�

�
�+

��
��

'	
��

�"
'�

��
 #

�!
��

�$
*

�

��� ��� ���

��� ���
11

ccNUMA Increases Highest Row ACT Rates
Commodity Benchmarks

Current + Future (Lower)
RH Thresholds

Multi-Node

Single-Node

Takeaway
Commodity workloads
can produce dangerous

ACT rates!

• Dirty sharing: cache line sharing with at least 1 writer
• Consider migratory sharing of lock-protected data

Migratory sharing occurs in commodity code!

Common Across Benchmarks: Dirty Sharing

12

Thread A

1 while(true)

2 acquire_lock()

3 write(shared_var)

4 release_lock()

Thread B

1 while(true)

2 acquire_lock()

3 write(shared_var)

4 release_lock()

Sources of Coherence-Induced Hammering

13

• Problem #1: Redundant Memory Directory Writes

• Problem #2: Mis-Speculated DRAM Reads

• Problem #3: Downgrade Writebacks

TODAY!

Hammering Writes: Migratory Sharing

14

Remote
write

Local Writer Remote Writer

Modified Invalid

snoop-All
(local owner, N/A)

Local write

Local Writer Remote Writer

Invalid Modified

snoop-All
(redundant write)

Nodes Local Writer Remote Writer

LLC Dir State Invalid Invalid

Mem Dir State remote-Invalid

Nodes Local Writer Remote Writer

LLC Dir State Invalid Modified

Mem Dir State snoop-All

Local write Remote write

WHY REDUNDANT?
No processor state
indicates memory
directory is already
in snoop-All

Outline

• Background: Rowhammer, ccNUMA

• Problem: Coherence-Induced Hammering

• Mitigation: MOESI-prime

• Evaluation and Takeaways

15

• Problem: processor can’t recognize memory directory is already snoop-All
• snoop-All: cache line might be dirty on a remote node

• Fix: for “conventional” dirty processor coherence states, add “prime” states
• Prime means memory directory in snoop-All, otherwise equivalent to conventional

• Similarity of conventional and prime states helps preserve correctness

“Prime” States to Avoid Redundant Writes

16

Modified
- dirty + read-write
- Mem dir state unknown

Modified-prime
- dirty + read-write
- Mem dir state = snoop-All

+

MOESI-prime in Action

17

Remote
write

Local Writer Remote Writer

Modified-prime Invalid

snoop-All
(local owner, N/A)

Local write

Local Writer Remote Writer

Invalid Modified-prime

snoop-All
(write omitted)

Nodes Local Writer Remote Writer

LLC Dir State Invalid Invalid

Mem Dir State remote-Invalid

Nodes Local Writer Remote Writer

LLC Dir State Invalid Modified-prime

Mem Dir State snoop-All

Local write Remote write

Modified-prime
- dirty + read-write
- Mem dir state = snoop-All

Outline

• Background: Rowhammer, ccNUMA

• Problem: Coherence-Induced Hammering

• Mitigation: MOESI-prime

• Evaluation and Takeaways

18

• Gem5 configurations modelled after major cloud provider’s settings
• Compared MOESI-prime to MESI and MOESI baseline protocols

• Micro-benchmarks: MOESI-prime prevents coherence-induced hammering
• Commodity benchmarks: PARSEC-3.0 and SPLASH-2x
• Many workloads exhibit >20,000 ACTs/64 ms to single row in baseline protocols

Evaluation

19

(2-nodes) Average Metrics Normalized to MESI Baseline (Higher is Better)

Metric MOESI MOESI-prime

Decrease in Max ACTs +5.58% +77.38%

Exec Time +0.61% +0.48%

DRAM Power 0.00% +0.22%

Takeaway
MOESI-prime mitigates

coherence-induced hammering,
and can even slightly improve

performance and power!

Recap

• Key Contribution #1: Coherence-induced hammering
• Commodity workloads can yield dangerous ACT rates

• Key Contribution #2: MOESI-prime coherence protocol
• Mitigates coherence-induced hammering

• Check out the paper for much more!
• Ex: other sources of coherence-induced hammering, proof of correctness

20

21

Thanks to my awesome collaborators!

Stefan Saroiu

Alec Wolman Yatin A. Manerkar
Baris Kasikci

Thanks for listening! Questions?

22Scan for Full Paper

