GCoM: A Detailed GPU Core Model for Accurate Analytical Modeling of Modern GPUs

Jounghoo Lee¹, Yeonan Ha¹, Suhyun Lee¹, Jinyoung Woo², Jinho Lee¹, Hanhwi Jang², and Youngsok Kim¹

¹Yonsei University
²Ajou University

49th International Symposium on Computer Architecture (ISCA-49)
Importance of Fast Perf. Modeling

• GPU design space is huge.

• Cycle-level simulation is the de facto standard method.
• Cycle-level simulation is accurate but too slow.
Alternative: Analytical Modeling

• Analytical models are fast.
 • They do not repeat cycle-by-cycle hardware operations.

• Analytical models also construct CPI stacks.
 • Prior works use interval analysis for accurate insight about bottlenecks.

• e.g., MDM [MICRO ‘20], GPUMech [MICRO ‘14]
GPU Interval Analysis

- **Performance = core issue rate** if no stall occurs
- **Interval**: a sequence of warp instructions followed by stall cycles

- **Representative Warp Selection**
 - Used to approximate the warps of a kernel

- **Single-Warp Modeling**
 - Split the representative warp into intervals

- **Multi-Warp Scheduling**
 - Model latency hiding by WLP (warp-level parallelism)

- **Memory Contention Modeling**
 - Model NoC and DRAM contention
Interval Analysis: Single/Multi-Warp

• Data dep. stalls break a single warp into intervals
 • Use average memory access time (AMAT) from cache simulator

• Model all warps in an SM as the representative warp
 • Hide data stalls with respect to warp scheduling policy (e.g., LRR, GTO)
Interval Analysis: Memory Contention

- Limited NoC/DRAM BW incur memory contention.

- Assume the same memory traffic from every SM.
Naïvely Modeling Modern GPUs

• i.e., tune the parameters of the existing interval models

• Outdated core assumptions incur high errors!
 • e.g., underestimate structural stalls, memory stalls, idle stalls, ...

MDM’s SM Model

<table>
<thead>
<tr>
<th>SM</th>
<th>Latency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Warp Scheduler</td>
<td>4</td>
</tr>
<tr>
<td>FP32</td>
<td>4</td>
</tr>
<tr>
<td>SFU</td>
<td>20</td>
</tr>
<tr>
<td>L1 D$</td>
<td>* 82 cyc Hit Lat</td>
</tr>
<tr>
<td>LD/ST AMAT</td>
<td></td>
</tr>
</tbody>
</table>

Naïve modeling

<table>
<thead>
<tr>
<th>SM</th>
<th>Latency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Warp Scheduler</td>
<td>4</td>
</tr>
<tr>
<td>FP32</td>
<td>2</td>
</tr>
<tr>
<td>SFU</td>
<td>8</td>
</tr>
<tr>
<td>INT</td>
<td>2</td>
</tr>
<tr>
<td>Tensor</td>
<td>16</td>
</tr>
<tr>
<td>LD/ST AMAT</td>
<td></td>
</tr>
</tbody>
</table>

[Graph showing normalized CPI for different components like AN, CFD, MDM, and LUD]
Limitation: Sub-Core-Level

- Naïve modeling cannot capture **ComStruct** stalls.
- ... by assuming sufficient functional unit lanes

Naïve modeling

- **SM**
 - **WS**
 - **Warp1**, **Warp2**, **Warp3**, **Warp4**
 - **INT** × 32
 - **SFU** × 32
 - **LD/ST** × 32

Real hardware

- **SM**
 - **Sub-Core**
 - **WS**
 - **Warp1**, **Warp2**
 - **INT** × 16
 - **SFU** × 16
 - **LD/ST** × 16
 - **Warp3**, **Warp4**
 - **INT** × 16
 - **SFU** × 16
 - **LD/ST** × 16
Limitation: SM-Level L1 D$

• Cannot capture **L1-D$ MemStruct & MemData** stalls

• ... by assuming unlimited bandwidth and by overlooking L1 D$’s sectors

Naïve modeling

Naïve modeling

Real hardware

Real hardware

High Performance Computing Platforms Lab
@ College of Computing, Yonsei University
Limitation: SM-Level Load Imbalance

• Cannot capture **intra-SM Idle stalls**

• ... by **disregarding multiple warp schedulers** per SM
Limitation: GPU-Level Load Imbalance

• Cannot capture **inter-SM Idle** stalls
• ... by **assuming the same # of warps per SM**

![Naïve modeling vs Real hardware diagram](image)
Summary of the Limitations

• Outdated & highly abstract GPU core model

• Sub-core-level
 • Limited functional unit lanes

• SM-level
 • Banked & sectored L1 data cache
 • Intra-SM load imbalance

• GPU-level
 • Inter-SM load imbalance
Contents

• Motivation and Background
• GCoM: A Detailed GPU Core Model
• Evaluation
• Conclusion
GCoM: Key Ideas

• Hierarchical **microarchitecture-driven** core modeling

• Sub-core level
 • Limited functional unit lanes ➔ Diverse per-FU **initiation intervals**

• SM-level
 • Banked L1 data cache ➔ Estimate the **effective BW** per interval
 • Sectored L1 data cache ➔ Extend **cache simulator**
 • Intra-SM load imbalance ➔ Estimate **WLP per sub-core**

• GPU-level
 • Inter-SM load imbalance ➔ **#warps per SM** considering TB scheduling
GCoM: Sub-Core-Level

- Capture ComStruct stalls by considering FU lane counts
 - Initiation interval (II) = \(\text{threadsPerWarp} / \#\text{FULanes} \)

ComStruct = the longest FU’s cycles - \(\frac{\#\text{insts}}{\text{issueRate}} \)
GCoM: SM-Level Banked L1 D$

- Capture MemStruct stalls with **effective BW per interval**
 - Assume sub-cores access L1 D$ banks like the representative warp
- MemStruct stalls can hide ComStruct stalls of a sub-core.

Real hardware

- **L1 D$ BW**
- **Sub-core**
 - ComStruct + MemStruct
 - MemStruct
- **Sub-core IDLE**
- **Interval End**
- **Issue cycles**

GCoM

- **20 bank access / 10 cyc**
- **Sub-core**
 - Issue
 - ComStruct
- **Sub-core**
 - Issue
 - MemStruct stalls
- **Sub-core IDLE**
- **Interval End**
- **Issue cycles**

High Performance Computing Platforms Lab
@ College of Computing, Yonsei University
GCoM: SM-Level Sectored L1 D$

- Capture MemData stalls with the extended $ simulator
- Model the sectored nature of L1 D$s
- Provide per-sector hit/miss counts & memory coalescing

Naïve modeling

Real hardware & GCoM
GCoM: SM-Level Load Imbalance

- Capture intra-SM Idle stalls by estimating per-sub-core WLP
 - \#warps per sub-core may differ

Intra-SM Idle = sub-core with max \#warps – others in the SM
GCoM: GPU-Level Load Imbalance

- Capture inter-SM Idle stalls using per-SM warp counts
 - Estimate per-SM warp counts with respect to TB scheduling
 - Perform & average interval analysis for each SM

Inter-SM Idle = the difference with the slowest SM
GCoM: Summary

• Sub-core-level
 • Limited FU lanes \(\Rightarrow C_{k,m}^{\text{Issue}}(x) = \frac{I_m \cdot \Pi_m \cdot x}{\#\text{ActSubCores}(x) \cdot \text{IssueRate}} \quad (I_m \leq I_k) \)

• SM-level
 • Banked L1 D$ \Rightarrow C_{k,L1}^{\text{Issue}}(x) = \left[\frac{b_k}{B_{L1}^k} \right] \times x$
 • Sectored L1 D$ \Rightarrow S_i^{\text{NoC}} + S_i^{\text{DRAM}}$
 • Sub-core load imbalance \(\Rightarrow \sum_{j=0}^{\#\text{SubCoresSM}-1} C_{i,j} \)

• GPU-level
 • Inter-SM load imbalance \(\Rightarrow C_{\text{Kernel}} = \frac{\sum_{i=0}^{\#\text{SMs}-1} C_i^{\text{Active}} + C_i^{\text{Idle}}}{\#\text{SMs}} \)
GCoM Framework

CUDA Application → SASS Trace Collection

Load/Store Operations → Sectored/Streaming Cache Simulation

Intervals, ComData → Sub-Core-Level Model

ComStruct → SM-Level Model

MemStruct → Intra-SM Idle

Warp Profiles → Warp Selection

Per-PC AMATs → Single/Multi-Warp Model

Architectural Parameters → warp scheduler, functional unit, cache, etc.

Memory Contention Model → Inter-SM Idle

MemData

Inter-SM Idle

 Kernel Cycle Stacks
Contents

- Motivation and Background
- GCoM: A Detailed GPU Core Model
- Evaluation
- Conclusion
Experimental Setup

• **GCoM vs. MDM** [MICRO ’20] against **Accel-sim** [ISCA ’20]
• Build CPI stacks with **GPU Stall Inspector** [ISPASS ’16]

• **NVIDIA RTX 2060** configuration
 • Validation against real NVIDIA RTX 2060, RTX 2060 Super, and RTX 3070

• **31 applications** from various benchmark suites
 • Rodinia, Pannotia, DeepBench, MLPerf, Polybench, Tango
 • Including irregular graph processing, BERT, Tensor Cores
Accurate GPU Modeling

• GCoM significantly improves modeling accuracy.
 • MAE of 10.0% vs. MDM’s 44.9%

• GCoM also builds more accurate CPI stacks.
 • Cosine similarity of 0.95 vs. MDM’s 0.70
Accurate Design Space Explorations

• GCoM accurately captures performance trends.
 • **Per-SM sub-core count, SM count**, sectored/non-sectored L1 D$, L1 D$ bank counts, L1 D$ sizes, ...

![Normalized CPI Graphs](image)
Accurate Real GPU Modeling

- MAE of **24.4%** against RTX 2060
 - Comparable to Accel-sim
- Applicable to other GPUs: RTX 2060 Super and RTX 3070
 - Can use traces of RTX 2060 to avoid time-consuming trace collection
Conclusion

• Hierarchical microarchitecture-driven GPU core modeling
 • **Sub-core-level**: Limited FU lanes
 • **SM-level**: Banked and sectored L1 D$, intra-SM load imbalance
 • **GPU-level**: Inter-SM load imbalance

• **GCoM**: a fast and accurate GPU performance model
 • MAE of **10.0%** against Accel-sim, **24.4%** against RTX 2060
 • **345.1x** faster than Accel-sim
Thank You!

• Any questions?
• We are planning to release GCoM soon!

Jounghoo Lee @ Yonsei University
jounghoolee@yonsei.ac.kr
https://hpcp.yonsei.ac.kr/