SeGraM: A Universal Hardware Accelerator for Genomic Sequence-to-Graph and Sequence-to-Sequence Mapping

Damla Senol Cali, Ph.D.

damlasenolcali@gmail.com
https://damlasenolcali.github.io/

Konstantinos Kanellopoulos, Joel Lindegger, Zulal Bingol, Gurpreet S. Kalsi, Ziyi Zuo, Can Firtina, Meryem Banu Cavlak, Jeremie S. Kim, Nika Mansourí Ghiasi, Gagandeep Singh, Juan Gomez-Luna, Nour Almadhoun Alserr, Mohammed Alser, Sreenivas Subramoney, Can Alkan, Saugata Ghose, Onur Mutlu

Carnegie Mellon ETH zürich Bilkent University

intel University of Illinois Urbana-Champaign SAFARI
Genome Sequencing

- **Genome sequencing**: Enables us to determine the order of the DNA sequence in an organism’s genome
 - Plays a pivotal role in:
 - Personalized medicine
 - Outbreak tracing
 - Understanding of evolution

- Modern genome sequencing machines extract smaller randomized fragments of the original DNA sequence, known as **reads**
 - **Short reads**: a few hundred base pairs, error rate of ~0.1%
 - **Long reads**: thousands to millions of base pairs, error rate of 10–15%
Mapping the reads to a reference genome (i.e., read mapping) is a critical step in genome sequence analysis.

Linear Reference: ACGTACGT

Read: ACGG

Alternative Sequence: ACGGACGT

Alternative Sequence: ACGTTACGT

Alternative Sequence: ACG-ACGT

Sequence-to-Sequence (S2S) Mapping

Graph-based Reference:

Read: ACGG

Sequence-to-Graph (S2G) Mapping

Sequence-to-graph mapping results in notable quality improvements. However, it is a more difficult computational problem, with no prior hardware design.
SeGraM: First Graph Mapping Accelerator

Our Goal:

Specialized, high-performance, scalable, and low-cost algorithm/hardware co-design that alleviates bottlenecks in multiple steps of sequence-to-graph mapping

SeGraM: First universal algorithm/hardware co-designed genomic mapping accelerator that can effectively and efficiently support:

- Sequence-to-graph mapping
- Sequence-to-sequence mapping
- Both short and long reads
Use Cases & Key Results

(1) Sequence-to-Graph (S2G) Mapping
 - 5.9×/106× speedup, 4.1×/3.0× less power than GraphAligner for long and short reads, respectively (state-of-the-art SW)
 - 3.9×/742× speedup, 4.4×/3.2× less power than vg for long and short reads, respectively (state-of-the-art SW)

(2) Sequence-to-Graph (S2G) Alignment
 - 41×–539× speedup over PaSGAL with AVX-512 support (state-of-the-art SW)

(3) Sequence-to-Sequence (S2S) Alignment
 - 1.2×/4.8× higher throughput than GenASM and GACT of Darwin for long reads (state-of-the-art HW)
 - 1.3×/2.4× higher throughput than GenASM and SillaX of GenAX for short reads (state-of-the-art HW)
Outline

- Introduction
- Background
 - Genome Graphs
 - Sequence-to-Graph Mapping
- SeGraM: Universal Genomic Mapping Accelerator
 - High-Level Overview
 - MinSeed
 - BitAlign
 - Use Cases
- Evaluation
- Conclusion
Genome Graphs

Genome graphs:

- Combine the linear reference genome with the known genetic variations in the entire population as a graph-based data structure.
- Enable us to move away from aligning with a single linear reference genome (reference bias) and more accurately express the genetic diversity in a population.

Sequence #1: ACGTACGT
Genome Graphs

Genome graphs:

- Combine the linear reference genome with the known genetic variations in the entire population as a graph-based data structure.
- Enable us to move away from aligning with a single linear reference genome (reference bias) and more accurately express the genetic diversity in a population.

Sequence #1: ACGTACGT
Sequence #2: ACGGACGT
Genome Graphs

Genome graphs:

- Combine the **linear reference genome** with the **known genetic variations in the entire population** as a graph-based data structure.
- Enable us to move away from aligning with a single linear reference genome (**reference bias**) and more accurately express the genetic diversity in a population.

Sequence #1: ACGTACGT

Sequence #2: ACGGACGT
Genome Graphs

Genome graphs:

- Combine the linear reference genome with the known genetic variations in the entire population as a graph-based data structure.
- Enable us to move away from aligning with a single linear reference genome (reference bias) and more accurately express the genetic diversity in a population.

Sequence #1: ACGTACGT
Sequence #2: ACGGACGT
Sequence #3: ACGTTACGT
Genome Graphs

Genome graphs:

- Combine the linear reference genome with the known genetic variations in the entire population as a graph-based data structure.
- Enable us to move away from aligning with a single linear reference genome (reference bias) and more accurately express the genetic diversity in a population.

Sequence #1: ACGTACGT
Sequence #2: ACGGACGT
Sequence #3: ACGTTACGT
Genome Graphs

Genome graphs:

- Combine the linear reference genome with the known genetic variations in the entire population as a graph-based data structure.
- Enable us to move away from aligning with a single linear reference genome (reference bias) and more accurately express the genetic diversity in a population.

Sequence #1: ACGTACGT
Sequence #2: ACGGACGT
Sequence #3: ACGTTACGT
Sequence #4: ACGACGT
Genome Graphs

Genome graphs:
- Combine the linear reference genome with the known genetic variations in the entire population as a graph-based data structure.
- Enable us to move away from aligning with a single linear reference genome (reference bias) and more accurately express the genetic diversity in a population.

Sequence #1: ACGTACGT
Sequence #2: ACGGACGT
Sequence #3: ACGTTACGT
Sequence #4: ACGACGT
Sequence-to-Graph Mapping Pipeline

Pre-Processing Steps (Offline)

1. **Genome Graph Construction**
 - (construct the graph using a linear reference genome and variations)

2. **Indexing**
 - (index the nodes of the graph)

Seed-and-Extend Steps (Online)

1. **Seeding**
 - (query the index & find the seed matches)

2. **Filtering/Chaining/Clustering**
 - (filter out dissimilar query read and subgraph pairs)

3. **S2G Alignment**
 - (perform distance/score calculation & traceback)

Optimal alignment between read & subgraph
S2S vs. S2G Alignment

\[\text{Single linear reference} \]

\[\text{Sequence-to-Sequence (S2S) Alignment} \]

\[\text{Query read} \]
In contrast to S2S alignment, S2G alignment must incorporate non-neighboring characters as well whenever there is an edge (i.e., hop) from the non-neighboring character to the current character.

S2S vs. S2G Alignment

Sequence-to-Graph (S2G) Alignment

Query read

Graph-based reference

Hop

A C G T A C G T
Analysis of State-of-the-Art Tools

Based on our analysis with **GraphAligner** and **vg**:

<table>
<thead>
<tr>
<th>Observation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Alignment step is the bottleneck</td>
</tr>
<tr>
<td>2</td>
<td>Alignment suffers from high cache miss rates</td>
</tr>
<tr>
<td>3</td>
<td>Seeding suffers from the DRAM latency bottleneck</td>
</tr>
<tr>
<td>4</td>
<td>Baseline tools scale sublinearly</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Observation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Existing S2S mapping accelerators are unsuitable for the S2G mapping problem</td>
</tr>
<tr>
<td>6</td>
<td>Existing graph accelerators are unable to handle S2G alignment</td>
</tr>
</tbody>
</table>
Outline

- Introduction
- Background
 - Genome Graphs
 - Sequence-to-Graph Mapping
- SeGraM: Universal Genomic Mapping Accelerator
 - High-Level Overview
 - MinSeed
 - BitAlign
 - Use Cases
- Evaluation
- Conclusion
SeGraM: Universal Genomic Mapping Accelerator

- **First universal genomic mapping accelerator** that can support both sequence-to-graph mapping and sequence-to-sequence mapping, for both short and long reads

- **First algorithm/hardware co-design** for accelerating sequence-to-graph mapping

- We base SeGraM upon a minimizer-based seeding algorithm
- We propose a novel bitvector-based alignment algorithm to perform approximate string matching between a read and a graph-based reference genome
- We co-design both algorithms with high-performance, scalable, and efficient hardware accelerators
SeGraM Hardware Design

Main Memory (graph-based reference & index)

- Minimizer Scratchpad
- Seed Scratchpad
- Find Minimizers
- Filter Minimizers by Frequency
- Find Candidate Seed Regions
- Read Scratchpad
- MinSeed (MS)

- Input Scratchpad
- Generate Bitvectors
- Hop Queues
- Bitvector Scratchpad
- Perform Traceback
- BitAlign (BA)

MinSeed: first hardware accelerator for Minimizer-based Seeding

BitAlign: first hardware accelerator for (Bitvector-based) sequence-to-graph Alignment

Damla Senol Cali
SeGraM Hardware Design

MinSeed: first hardware accelerator for Minimizer-based Seeding

BitAlign: first hardware accelerator for (Bitvector-based) sequence-to-graph Alignment
MinSeed HW

- MinSeed = 3 computation modules + 3 scratchpads + memory interface
 - Computation modules: Implemented with simple logic
 - Scratchpads: 50kB in total; employ double buffering technique to hide the latency of MinSeed
 - High-Bandwidth Memory (HBM): Enables low-latency and highly-parallel memory access
BitAlign HW

- Linear cyclic systolic array-based accelerator
- Based on the GenASM hardware design*
- Incorporates *hop queue registers* to feed the bitvectors of non-neighboring characters/nodes (i.e., *hops*)

[*] D. Senol Cali et al. "GenASM: A High-Performance, Low-Power Approximate String Matching Acceleration Framework for Genome Sequence Analysis" (MICRO’20)
Overall System Design of SeGraM

High Bandwidth Memory (HBM2E) Stack

CH0 CH1 CH2 ... CH6 CH7

SeGraM Module (1 x per HBM2E stack)

Host

MS BA SeGraM Acc.

MS BA SeGraM Acc.
Use Cases of SeGraM

(1) Sequence-to-Graph Mapping

(2) Sequence-to-Graph Alignment

(3) Sequence-to-Sequence Alignment

(4) Seeding
Outline

- Introduction
- Background
 - Genome Graphs
 - Sequence-to-Graph Mapping
- SeGraM: Universal Genomic Mapping Accelerator
 - High-Level Overview
 - MinSeed
 - BitAlign
 - Use Cases
- Evaluation
- Conclusion
Evaluation Methodology

- **Performance, Area and Power Analysis:**
 - *Synthesized SystemVerilog models* of the MinSeed and BitAlign accelerator datapaths
 - *Simulation- and spreadsheet-based* performance modeling

- **Baseline Comparison Points:**
 - *GraphAligner, vg, and HGA* for sequence-to-graph mapping
 - *PaSGAL* for sequence-to-graph alignment
 - *Darwin, GenAx, and GenASM* for sequence-to-sequence alignment

- **Datasets:**
 - *Graph-based reference*: GRCh38 + 7 VCF files for HG001-007
 - *Simulated datasets* for both short and long reads
Based on our synthesis of MinSeed and BitAlign accelerator datapaths using the Synopsys Design Compiler with a **28nm** process (@ **1GHz**):

<table>
<thead>
<tr>
<th>Component</th>
<th>Area (mm²)</th>
<th>Power (mW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MinSeed – Logic</td>
<td>0.017</td>
<td>10.8</td>
</tr>
<tr>
<td>Read Scratchpad (6 kB)</td>
<td>0.012</td>
<td>7.9</td>
</tr>
<tr>
<td>Minimizer Scratchpad (40 kB)</td>
<td>0.055</td>
<td>22.7</td>
</tr>
<tr>
<td>Seed Scratchpad (4 kB)</td>
<td>0.008</td>
<td>6.4</td>
</tr>
<tr>
<td>BitAlign – Edit Distance Calculation Logic with Hop Queue Registers (64 PEs)</td>
<td>0.393</td>
<td>378.0</td>
</tr>
<tr>
<td>BitAlign – Traceback Logic</td>
<td>0.020</td>
<td>2.7</td>
</tr>
<tr>
<td>Input Scratchpad (24 kB)</td>
<td>0.033</td>
<td>13.3</td>
</tr>
<tr>
<td>Bitvector Scratchpads (128 kB)</td>
<td>0.329</td>
<td>316.2</td>
</tr>
<tr>
<td>Total – 1 SeGrA.M Accelerator</td>
<td>0.867</td>
<td>758.0 (0.8 W)</td>
</tr>
<tr>
<td>Total – 4 SeGrA.M Modules (32 SeGrA.M Accelerators)</td>
<td>27.744</td>
<td>24.3 W</td>
</tr>
<tr>
<td>HBM2E (4 stacks)</td>
<td>--</td>
<td>3.8 W</td>
</tr>
</tbody>
</table>
Key Results – SeGraM with Long Reads

SeGraM provides 5.9× and 3.9× throughput improvement over GraphAligner and vg, while reducing the power consumption by 4.1× and 4.4×
Key Results – SeGraM with Short Reads

SeGraM provides 106× and 742× throughput improvement over GraphAligner and vg, while reducing the power consumption by 3.0× and 3.2×
Key Results – BitAlign (S2G Alignment)

BitAlign provides **41×-539× speedup** over PaSGAL
Key Results – BitAlign (S2S Alignment)

- BitAlign can also be used for sequence-to-sequence alignment
 - The cost of more functionality: *extra hop queue registers*
 - *We do not* sacrifice any performance

- For long reads (over GACT of Darwin and GenASM):
 - 4.8× and 1.2× throughput improvement,
 - 2.7× and 7.5× higher power consumption, and
 - 1.5× and 2.6× higher area overhead

- For short reads (over SillaX of GenAx and GenASM):
 - 2.4× and 1.3× throughput improvement
Outline

- Introduction
- Background
 - Genome Graphs
 - Sequence-to-Graph Mapping
- SeGraM: Universal Genomic Mapping Accelerator
 - High-Level Overview
 - MinSeed
 - BitAlign
 - Use Cases
- Evaluation
- Conclusion
Additional Details in the Paper

- Details of the pre-processing steps of SeGraM
- Details of the MinSeed and BitAlign algorithms
- Details of the MinSeed and BitAlign hardware designs
- Bottleneck analysis of the existing tools
- Evaluation methodology details (datasets, baselines, performance model)
- Additional results for the three evaluated use cases
- Sources of improvements in SeGraM
- Comparison of GenASM and SeGraM
Conclusion

- **SeGraM**: First universal algorithm/hardware co-designed genomic mapping accelerator that supports:
 - Sequence-to-graph (S2G) & sequence-to-sequence (S2S) mapping
 - Short & long reads
 - **MinSeed**: First minimizer-based seeding accelerator
 - **BitAlign**: First (bitvector-based) S2G alignment accelerator

- SeGraM supports multiple use cases:
 - End-to-end S2G mapping
 - S2G alignment
 - S2S alignment
 - Seeding

- SeGraM outperforms state-of-the-art software & hardware solutions
SeGraM [ISCA 2022]

Damla Senol Cali, Konstantinos Kanellopoulos, Joel Lindegger, Zulal Bingol, Gurpreet S. Kalsi, Ziyi Zuo, Can Firtina, Meryem Banu Cavlak, Jeremie S. Kim, Nika Mansouri Ghiasi, Gagandeep Singh, Juan Gomez-Luna, Nour Almadhoun Alserr, Mohammed Alser, Sreenivas Subramoney, Can Alkan, Saugata Ghose, and Onur Mutlu

“SeGraM: A Universal Hardware Accelerator for Genomic Sequence-to-Graph and Sequence-to-Sequence Mapping”

SeGraM: A Universal Hardware Accelerator for Genomic Sequence-to-Graph and Sequence-to-Sequence Mapping

Damla Senol Cali¹ Konstantinos Kanellopoulos² Joël Lindegger² Zülal Bingöl³ Gurpreet S. Kalsi⁴ Ziyi Zuo⁵ Can Firtina² Meryem Banu Cavlak² Jeremie Kim² Nika Mansouri Ghiasi² Gagandeep Singh² Juan Gómez-Luna² Nour Almadhoun Alserr² Mohammed Alser² Sreenivas Subramoney⁴ Can Alkan³ Saugata Ghose⁶ Onur Mutlu²

¹Bionano Genomics ²ETH Zürich ³Bilkent University ⁴Intel Labs ⁵Carnegie Mellon University ⁶University of Illinois Urbana-Champaign
SeGraM (Software implementations and datasets will be available soon!)

SeGraM is a universal genomic mapping accelerator that supports both sequence-to-graph mapping and sequence-to-sequence mapping, for both short and long reads. SeGraM consists of two main components: (1) MinSeed, the first minimizer-based seeding accelerator, which finds the candidate mapping locations (i.e., subgraphs) in a given genome graph; and (2) BitAlign, the first bitvector-based sequence-to-graph alignment accelerator, which performs alignment between a given read and the subgraph identified by MinSeed. MinSeed is built upon a memory-efficient minimizer-based seeding algorithm, and BitAlign is built upon our novel bitvector-based, highly-parallel sequence-to-graph alignment algorithm.
SeGraM: A Universal Hardware Accelerator for Genomic Sequence-to-Graph and Sequence-to-Sequence Mapping

Damla Senol Cali, Ph.D.

damlasenolcali@gmail.com
https://damlasenolcali.github.io/

Konstantinos Kanellopoulos, Joel Lindegger, Zulal Bingol, Gurpreet S. Kalsi, Ziyi Zuo, Can Firtina, Meryem Banu Cavlak, Jeremie S. Kim, Nika Mansouri Ghiasi, Gagandeep Singh, Juan Gomez-Luna, Nour Almadhoun Alserr, Mohammed Alser, Sreenivas Subramoney, Can Alkan, Saugata Ghose, Onur Mutlu

Carnegie Mellon
ETH Zürich
Bilkent University
Intel
University of Illinois
SAFARI