
A Case for Hardware-Based Demand Paging
Gyusun Lee∗† Wenjing Jin∗‡ Wonsuk Song† Jeonghun Gong‡ Jonghyun Bae‡

Tae Jun Ham‡ Jae W. Lee‡ Jinkyu Jeong†

†Sungkyunkwan University ‡Seoul National University

{gyusun.lee, wonsuk.song}@csi.skku.edu, jinkyu@skku.edu

{wenjing.jin, jh.gong, jonghbae, taejunham, jaewlee}@snu.ac.kr

Abstract—The virtual memory system is pervasive in today’s
computer systems, and demand paging is the key enabling mech-
anism for it. At a page miss, the CPU raises an exception, and the
page fault handler is responsible for fetching the requested page
from the disk. The OS typically performs a context switch to run
other threads as traditional disk access is slow. However, with the
widespread adoption of high-performance storage devices, such
as low-latency solid-state drives (SSDs), the traditional OS-based
demand paging is no longer effective because a considerable
portion of the demand paging latency is now spent inside the OS
kernel. Thus, this paper makes a case for hardware-based demand
paging that mostly eliminates OS involvement in page miss
handling to provide a near-disk-access-time latency for demand
paging. To this end, two architectural extensions are proposed:
LBA-augmented page table that moves I/O stack operations to
the control plane and Storage Management Unit that enables
CPU to directly issue I/O commands without OS intervention
in most cases. OS support is also proposed to detach tasks
for memory resource management from the critical path. The
evaluation results using both a cycle-level simulator and a real x86
machine with an ultra-low latency SSD show that the proposed
scheme reduces the demand paging latency by 37.0%, and hence
improves the performance of FIO read random benchmark by
up to 57.1% and a NoSQL server by up to 27.3% with real-world
workloads. As a side effect of eliminating OS intervention, the
IPC of the user-level code is also increased by up to 7.0%.

Index Terms—demand paging, virtual memory, page fault,
operating systems, CPU architecture, hardware extension

I. INTRODUCTION

The storage system stack builds on the long-standing

assumption of a large performance gap between a fast CPU and

a slow disk [14]. However, the widespread adoption of high-

performance storage devices, such as solid-state drives (SSDs),

is rapidly narrowing down this performance gap. Today’s

ultra-low latency SSDs, such as Intel’s Optane SSD [31] and

Samsung’s Z-SSD [64], feature only a few microseconds of

access time [45], which takes at most tens of thousands of CPU

cycles, instead of tens of millions. With this ever-shrinking

gap between CPU and storage performance it is necessary

to reexamine the design decisions made for the conventional

storage system stack to fully harness the performance potentials

of these emerging storage devices [45], [74].

Modern computer systems employ page-based virtual mem-

ory (paging), and demand paging is the key enabling mech-

*These authors contributed equally to this work.

anism, wherein the main memory is used as a cache for

disks [55]. Upon a miss on memory (i.e., page fault), CPU

raises an exception, and the page fault handler in the operating

system (OS) fetches the missing page from disk. The OS

typically performs a context switch to run other threads as

traditional disk access is slow. However, this page fault handling

does more harm than good for ultra-low latency SSDs. Our

analysis reveals that the OS’s page fault handler not only incurs

a significant direct cost (up to 76.29% of the device access

time) in terms of miss handling latency but also charges hidden

costs such as microarchitectural resource pollution [66] (e.g.,

caches and branch predictors), thereby slowing down a user

application. This motivates us to take a vertically integrated

approach from the hardware architecture to software to improve

the performance of demand paging.

This paper makes a case for hardware-based demand paging,

whose time, we believe, has finally come. The main goal

of the proposed scheme is to eliminate wasted CPU cycles

inside the OS kernel to service a page fault with a near-disk-

access-time latency without compromising page protection

capabilities provided by OS. To this end, we propose two

architectural extensions: i) a logical block address (LBA)-
augmented page table with an extended page table walker

in memory management unit (MMU) and ii) a novel hardware

structure called storage management unit (SMU). The former

allows the CPU to understand the storage layout [6], so

upon a page miss, the CPU can locate the missing page

in the storage device. The latter handles storage device-

specific I/O operations (e.g., the NVMe protocol [51] in our

prototype). With the proposed architectural extension, when

a CPU accesses a non-resident page, it does not raise an

exception but stalls its pipeline and transfers I/O data directly

in hardware. Consequently, the latency of miss handling, as well

as architectural resource pollution by frequent OS intervention

can be greatly reduced.

These new architectural extensions demand proper support

from OS [48], and we take a plane separation approach [59].

That is, the data plane (i.e., page miss handling) is performed

in hardware, thereby significantly reducing the miss penalty.

In the control plane, necessary information is provided by the

OS kernel: preserving page-level protections, augmenting a

page table entry (PTE) with an LBA during page replacement,

1103

2020 ACM/IEEE 47th Annual International Symposium on Computer Architecture (ISCA)

978-1-7281-4661-4/20/$31.00 ©2020 IEEE
DOI 10.1109/ISCA45697.2020.00093

allocating a device command queue, supplying free pages to

the SMU, and synchronizing OS metadata (e.g., LRU list) with

updated hardware usage by hardware. This plane separation not

only detaches these management costs from the critical path

when handling a page miss but also improves the execution

efficiency of these operations by executing them in batch [66].

We evaluate the effectiveness of the proposed architectural

extensions using both a detailed cycle-level simulator [26] and a

real x86 machine. Our evaluation using Samsung’s Z-SSD [64]

demonstrates that our hardware-based demand paging reduces

the latency of demand paging by 37.0% compared to the

conventional OS-based demand paging. To evaluate the impact

of our proposal on real-world workloads, we run FIO random

reads as a microbenchmark, and DBBench readrandom [21]

and YCSB (Yahoo Cloud Serving Benchmark) [18] with

RocksDB [60] NoSQL store. The results show that our scheme

improves overall throughput by up to 27.3% and user-level

IPC by up to 7.0% compared to the OS-based demand paging.

All these benefits come at a tiny area cost, 0.004% of the CPU

die area.

To the best of our knowledge, this paper is the first to

successfully demonstrate the feasibility of hardware-based

demand paging. Our contributions can be summarized as

follows:

• We analyze the latency of the conventional OS-based

demand paging with today’s low-latency SSDs and its

performance impact on user applications.

• We redefine the roles of hardware and OS to accomplish

demand paging with a near-disk-access-time latency. Our

micro-architectural design detaches time-consuming OS

operations from the critical path of demand paging, so

the critical path mostly runs in hardware. The OS-level

support acts as a control plane to support the critical path.

• We provide a detailed evaluation of the proposed archi-

tecture and OS support using a cycle-accurate full-system

simulator and a real x86 machine. The evaluation results

demonstrate that the proposed scheme accelerates the

performance of demand paging and also improves the

execution efficiency of user-level instructions.

II. BACKGROUND AND MOTIVATION

A. Demand Paging and Page Fault

Many applications handling a large amount of data rely on

virtual memory and demand paging for its convenience of use.

While non-volatile memory (NVM) technologies have recently

hit the market as an option to expand main memory [29],

they are far from being the mainstream partly due to their

lower-than-expected performance and cost efficiency and higher

performance variations [34], [54]. Instead, a hierarchy of

DRAM backed by high-performance SSDs is still the most

popular choice for applications processing a large volume of

data. Those applications often map their data stored in a disk

to virtual memory and access them without programmers’

intervention to load requested data into memory. When a

non-resident page is accessed in virtual memory, demand

Fig. 1. Execution time breakdown of YCSB-C [18] with various ratio of
dataset and memory size

paging is triggered that transfer data from disk to memory.

Application programmers are also freed from the concerns of

buffer replacement. Data are not usually fit in memory, hence

requiring data replacement. By using virtual memory, the page

replacement algorithm in the OS kernel preserves recently used

data in memory and evicts less-likely used data to disk.

This memory mapped I/O using mmap() has the following

advantages over the conventional read/write I/O: i) it saves

memory space with no redundant buffering in both user and

kernel spaces as the user program does not require explicit

buffering [37]; ii) it is easier to make persistent a complex

in-memory object without invoking frequent fine-grained I/O

system calls; iii) the cached portion of the memory-mapped file

can be accessed faster due to fewer context switches [22], [67],

[73]. The memory-mapped I/O is particularly well suited for

applications featuring large working sets and random access

patterns. Accordingly, many NoSQL applications [49], [60], in-

memory MapReduce [3], [67], graph analytics [57], [58], web

servers [2] adopt this technique. Also, programming guides for

mobile devices [4], [5] often provide performance optimization

tips using mmap().
For such applications, the performance of demand paging

is important since it is a form of cache miss that affects the

critical path. Figure 1 shows the execution time of the YCSB-C

workload and the fraction in time spent for demand paging

with varying the ratio of physical memory and dataset size;

X:1 means the dataset size is X times larger than the physical

memory size. As shown in the figure, as the dataset size

increases, a large fraction of time is spent on demand paging

(i.e., page fault) while the time spent in the user application

(i.e., compute time) remains similar.

A page fault is a key mechanism to implement OS-based

demand paging. When a virtual address references a non-

resident page in memory (page miss), CPU raises an exception,

and the page fault handler in the OS kernel handles the

exception (page miss handling). The page fault handler first

allocates a new page frame and issues a read request to the

storage I/O stack in the kernel. After the device driver sends a

device-specific I/O request to the device-side command queue,

the kernel typically switches the context of the current CPU

to save CPU cycles because of slow disk access times. Once

an I/O request is completed, the blocked thread is woken up,

and I/O software stack returns to the fault handler. The fault

handling path updates the OS-managed metadata structure (e.g.,

1104

Fig. 2. Performance trends of components in computer systems [14]

Fig. 3. Time breakdown of a single page fault handling (Drawn not to scale)

LRU list and reverse mapping), updates the PTEs to make it

point to the new page, and finally returns from the exception.

B. Limitations of Page Fault with Ultra-low Latency SSDs

The problem is that recent significant performance advance

of SSDs makes the overheads of page fault handling (i.e.,

OS-based page miss handling) no longer lightweight. Faster

storage media have introduced [16], [33], [63]. These devices

are now attached to a high-speed I/O bus (e.g., PCI-express

3.0), whose I/O controller is integrated inside a processor

die. A more efficient storage access protocol (e.g., NVM

express (NVMe) [51]) has been introduced to increase protocol-

level efficiency and to reduce CPU overheads [52]; an NVMe

protocol requires a single 64 bytes cacheline write to memory

and a single PCIe register write to dispatch a single I/O

command to a device. The NVMe protocol also supports up to

64K command queues and 64K entries in each queue to scale

with multi-core CPUs and high performance of storage media.

Because of these device-side advances, today’s ultra-low

latency SSDs can deliver up to 3 GB/s I/O bandwidth and only

a few microseconds of I/O latency [31], [64]. This trend rapidly

narrows the long-standing huge performance gap between CPU

and disk, as shown in Figure 2. As of 2019, a disk access

time is tens of million CPU cycles, whereas the access time of

ultra-low latency SSDs is only tens of thousand CPU cycles.

Figure 3 shows the latency breakdown of a single page

fault handling. As shown in the figure, each operation in the

fault handling path takes a small amount of time but the total

account for the large fraction of the device time: 2.45% on

exception and page table walk, 9.85% on I/O submission in

the I/O stack, 2.5% on interrupt delivery, 9.85% on context

switch, and 20.6% on I/O completion. However, because of

the shrunken device time, the aggregated overhead becomes

76.3% of the device time, which is quite substantial.

Fig. 4. Performance impact of page faults on YCSB-C: (a) normalized
throughput and (b) normalized user-level IPC and microarchitectural events

The page fault handling incurs not only such direct costs

in terms of latency but also indirect costs such as microarchi-

tectural resource pollution [66]. Figure 4 shows throughput

and user-level microarchitectural events (i.e., IPC, miss events)

while running the YCSB-C workload with and without page

faults. The workload is configured to have a dataset fit in

memory and we compare two cases: ideal experiencing no

page faults with the whole dataset pre-loaded into memory

and MAP_POPULATE enforced, and OSDP experiencing frequent

page faults with no pre-loading. The results show that OSDP
only has less than a half throughput of ideal. The cost of

page fault handling can be divided into direct and indirect

costs. The direct cost of page faults is additional CPU cycles

to execute the page fault handler in OS and perform disk

I/O. Furthermore, as Figure 4(b) shows, page faults also

degrade the execution efficiency of user-level instructions

by polluting microarchitectural resources such as caches and

branch predictors [66], hence lowering the user-level IPC.

C. New Direction: Hardware-based Demand Paging

If demand paging can be supported directly by hardware, no

exception needs to be raised to eliminate OS intervention. The

latency of demand paging can also be greatly reduced because

it is directly performed by CPU. To accomplish this hardware-

based demand paging, however, three following important

issues need to be resolved.

• How to make a CPU understand storage layout [6]?
This is important for a CPU to correctly locate missing data

in a storage device when a page miss occurs in memory.

Since storage layout is managed by the OS kernel (e.g., file

system or swapping system), this semantic gap between

CPU and the kernel should be bridged.

• How to make a CPU control a storage I/O device? A

storage device is typically controlled by a device driver in

the OS kernel, and various, often complex device control

protocols exist depending on the type of device. Hence,

this issue includes two sub-issues: i) how to make an

isolated I/O path for a CPU to control a storage device and

ii) how to make a CPU handle a device control protocol.

• How to handle remaining page fault operations in
the OS kernel? During a page fault, OS prepares a free

page and updates the OS-managed metadata structures

1105

Fig. 5. Hardware-based demand paging overview. Extended or newly added
hardware or data structures are shaded in grey.

associated with the page table. When the hardware directly

handles page faults without the OS intervention, these

tasks should be handled by the OS in some way.

Our work addresses these three issues through new archi-

tectural extensions and OS support. Specifically, Section III-B

explains how our work resolves the first issue through an

architectural extension. Section III-C describes how we address

the second issue with the introduction of a novel hardware

component. Finally, Section IV introduces the operating system

support required to address the third issue.

III. HARDWARE-BASED DEMAND PAGING

A. Overview

The proposed hardware-based demand paging handles a

page miss in hardware without exception. Figure 5 presents

the overall structure of the proposed scheme. The proposed

architectural extension is comprised of the following two major

components:

• Logical block address (LBA)-augmented page table is

proposed to make the CPU understand the storage layout.

Each PTE for non-resident pages is now augmented LBA,

and upon a page miss, the CPU can identify the location

of missing data in storage without the intervention by OS.

• Storage management unit (SMU) handles storage

device-specific I/O operations in cooperation with a

memory management unit (MMU) handling address

translation. SMU exposes an interface for OS to install

proper information to make CPU issue an I/O command

directly. This includes an isolated I/O command queue

for CPU and free page frames for page miss handling.

With the proposed architectural extension, when a page miss

occurs, CPU does not raise an exception but stalls its pipeline

and issues I/O operations directly in hardware. Consequently,

the latency of demand paging can be greatly reduced because of

the elimination of page fault handling overhead in the OS kernel.

A user application can also execute its instructions efficiently

due to the reduced architectural resource pollution caused

by frequent OS intervention. We discuss both components in

greater detail in the rest of this section.

Fig. 6. PTE layouts for (a) a present page and (b) a non-present but LBA-
augmented page.

B. LBA-Augmented Page Table and MMU Extensions

Page Table Structure. The PTE of an invalid page holds

the logical block address (LBA) to enable hardware-based

demand paging. We call this page table an LBA-augmented
page table. Figure 6 shows the PTE layout when a page is

present in memory (a) and when a page is non-present and

LBA-augmented (b).

The LBA bit set to one indicates that a page miss of this

virtual page should be handled by hardware and that the PTE

holds a valid LBA in the disk for the page. This bit is set

whenever a non-resident page is made (e.g., mmap() or page

replacement), and the OS decides to use hardware acceleration

for its page miss handling (Section IV-B). When a PTE is

augmented LBA, it also holds proper protection bits to preserve

page-level permission after its page miss handled in hardware.

Whenever the LBA of a file page in the disk is changed, the

LBA update is applied to its corresponding LBA-augmented

PTE if it is not present in memory.

Page Miss Handling with LBA-augmented PTE. During a

page table walk, MMU checks both present and LBA bits in

the PTE of the requested virtual address. If both bits are clear

(i.e., not resident and not LBA-augmented), MMU raises an

exception, and OS handles the page fault normally. In contrast,

if the page is not present and the LBA bit is set, MMU requests

SMU to fetch the missing virtual page from the disk. Once

the requested page is loaded to memory, MMU then receives

the newly allocated physical frame address from SMU and

resumes the stalled address translation.

The LBA bit is recognized by MMU only when its present

bit is clear. In the conventional system, when the present bit

is clear, the other bits are ignored, thus OS usually keeps

architecture-independent metadata in PTE (e.g., swap offset

when a virtual page is swapped out). With the LBA bit set,

the page frame number (PFN) bits are used by an LBA, as in

Figure 6, which are utilized by MMU. This extension can be

readily accommodated by OS without any conflict as it can

now put an LBA (i.e., physical block address) instead of a

swap offset (virtual block address).

When the LBA bit is set, the page frame number (PFN)

field in a PTE should point to a unique storage block in a

system. The PFN bits are decomposed into three fields: socket

ID (SID), device ID and LBA. The SID field is used to identify

the home SMU to handle a page miss to the corresponding

page. An <SID, device ID> pair identifies a block device (i.e.,

an NVMe namespace) in the system. LBA finally locates a

unique block within the block device. In our prototype, we

assume to use 3 bits for SID (i.e., up to 8 sockets), 3 bits for

1106

Fig. 7. Page miss handler

Fig. 8. NVMe host controller

device ID (i.e., up to 8 devices per socket) and 41 bits for LBA

(i.e., up to 1 PB storage capacity). The remaining 17 bits are

for storing protection bits (12 bits) and architecture-specific

features (e.g., 1 bit for no-execute (NX) and 4 bits for page

protection key in x86 architecture [32]).

The LBA bit is also added to entries in upper-level page

tables (e.g., page middle directory (PMD) and page upper

directory (PUD) in Linux on the x86_64 architecture [19],

[32]), but is used for a different purpose. Specifically, a set LBA

bit in the upper-level entries indicates that its corresponding

last-level page table has one or more PTEs whose page miss

has been handled by hardware, but OS metadata is not yet

updated. Thus, this bit is set when the SMU finishes page miss

handling for the relevant PTE and then later cleared by OS

when the PTE updates are completely synchronized with the

rest of OS data structures. We have empirically found that

marking this information in the next two levels up is sufficient

to keep the overhead of finding unsynchronized PTEs low. The

details are discussed in Section IV-C.

C. Storage Management Unit (SMU)

The storage management unit (SMU) is the key extended

architectural component to handle page miss directly in CPU.

It consists of two major parts: page miss handler and NVMe
host controller. Figure 7 and 8 depict the structure of the

two components. The former handles page misses issued by

cores and coalesces duplicated page misses. The latter handles

storage-device specific I/O control.

Page Miss Handler. When a page miss occurs, MMU sends

a page miss handling request to SMU specified by Socket ID

(SID) of the PTE. The request has five parameters, the addresses

of the three entries (PUD entry, PMD entry, and PTE), device

ID, and LBA. The address of a PTE is an identifier of a page

miss since it is the unique key of a virtual page. The device

ID and LBA are used to issue a block I/O request, and the

three addresses of the entries are used to update their values

after handling the page miss.

The page miss handler maintains a set of page miss status
holding registers (PMSHR). Its structure is similar to that

of miss status holding register (MSHR) [41], [69] in that

it coalesces duplicated page miss handling requests. Each

entry of PMSHR holds the status of an outstanding page miss.

The number of entries in PMSHR determines the maximum

concurrent outstanding I/O requests supported by SMU. Our

prototype empirically chooses 32 entries for PMSHR, which

works well in our setup.

When requested to handle a page miss, SMU first looks up

any outstanding page miss to the same page in PMSHR (� in

Figure 7) by using the PTE address as the key. If found, the

request returns immediately and the page table walk in MMU

enters a pending state. When the page miss handler completes

its page miss handling, it broadcasts a completion message

with the PTE address, the value of the PTE, and the result of

the page miss handling. Then, the pending page table walk

can continue. If not found, � the page miss handler allocates

an entry in PMSHR and initializes it with the parameters of

the new page miss handling request.

For the next step, � the free page fetcher allocates a new

page frame to hold new data from disk. In our scheme, SMU

maintains a buffer of free pages called a free page queue, a

circular queue residing in memory containing a set of <PFN,

DMA address> pairs. To consume each entry in the queue,

our hardware maintains three registers, queue base address,

head and tail pointers. This queue has a single consumer (the

free page fetcher hardware) and a single producer (a page refill

routine in the OS kernel), and consequently, no synchronization

is necessary. When the queue is empty, SMU invalidates the

entry in PMSHR and notifies MMU of the failure of page miss

handling. Then, MMU raises a page fault exception and the OS

page fault handler handles this page miss. Since the free page

queue is empty, the kernel also refills the free page queue by

using its page allocator (Section IV-D). A naive implementation

of free page fetching can potentially expose a whole memory

round-trip latency because it reads an entry from memory. To

avoid this issue, our hardware eagerly prefetches and buffers a

few free pages into SMU.

For the next step, � the page miss handler completes the

initialization of the entry in PMSHR by writing the allocated

PFN, which is later used to update PTE. Then, � it sends

an I/O request to the NVMe host controller (described in the

next paragraph). After � the I/O completes, � the page table
updater updates the PTE as well as PMD and PUD entries

1107

Fig. 9. NVMe queue descriptor registers allocated for each block device.

by using their addresses. Hence, the LBA field in the PTE is

replaced by PFN, and the LBA bits of the upper-level entries

are set. Note that SMU does not clear the LBA bit of the PTE

to ensure OS later updates the metadata associated with the

PTE (see Section IV-C). Once all these updates are finished, 	
SMU broadcasts a message to notify cores of the completion of

page miss handling and finally invalidates the PMSHR entry.

NVMe Host Controller. When the page miss handler decides

to issue an I/O command, it transfers the DMA address, device

ID, LBA, and the index of PMSHR entry to the NVMe host

controller (� in Figure 7 connected to � in Figure 8). The

NVMe host controller handles commands for a 4KB read

without a physical region page (PRP) list and I/O completion

in the NVMe protocol [51]. It maintains several sets of

descriptor registers (Figure 9) each of which stores necessary

information to fetch a block from a block device (or an NVMe

namespace1 [51]). Our prototype assumes to support 8 block

devices for each SMU with 3-bit device ID. When the OS

kernel enables the proposed hardware-based demand paging for

a certain file on a block device, it allocates a new NVMe I/O

queue pair, which is isolated from other OS-managed I/O queue

pairs, and initializes one set of the NVMe queue descriptor

registers for the new I/O queue pair. Then, by augmenting a

PTE with a proper SID, device ID and LBA, the SMU can

correctly locate and fetch the requested file block from the

block device.

To issue an I/O command, the NVMe host controller

generates a 64-byte NVMe command and � writes it to memory

at the address specified by SQ base address + SQ tail. Then,

� it rings the SQ doorbell (i.e., write to the PCIe register) to

notify the NVMe device of a new request arrival.

For I/O completion, our scheme disables interrupt for the

I/O command queues allocated to SMU [51] to avoid OS

intervention. Instead, the completion unit � monitors all

memory write transactions from the PCIe root complex via

snooping the memory address (CQ base address + CQ head).

When it happens, � the completion unit handles the completion

protocol (progressing NVMe CQ pointer, ringing CQ doorbell,

updating the CQ phase register if necessary), and � percolates

the completion upward to the page miss handler. Note that

each NVMe command is tagged with the index of PMSHR

entry, which is used to find the corresponding PMSHR entry

during I/O completion handling.

1A namespace is a storage volume organized into logical blocks, typically
managed by a single file system.

mmap()

Fig. 10. Comparison between OS-handled demand paging and the proposed
hardware-based demand paging

IV. OPERATING SYSTEM SUPPORT

A. Overview

Figure 10 compares the traditional OS-based demand paging

and the proposed hardware-based demand paging. First, the

system call API is extended so that page miss on certain

pages can be handled in hardware (Section IV-B). Second, OS

metadata updates are detached from the critical path and are

batched in the background (Section IV-C). Third, free page

allocation does not happen every time for a page miss. Instead,

a number of free pages are allocated in batch during a device

I/O time or through the use of a background kernel thread

(Section IV-D). Finally, I/O block layer operations are removed

from the OS since the hardware SMU, specifically, NVMe host

controller (Section III-C) handles I/O communication. Below,

we discuss each aspect in detail.

B. Fast File mmap()

For flexible deployment of hardware-based demand paging

on a per-virtual memory area basis, we extend the mmap()
system call so an application selects virtual memory areas

requiring the fast demand paging. For example, database files

of a NoSQL application or graph data of a graph analytics

application are the target of the fast file mmap() because the

latency of page miss handling on those files critically affects

the performance of those applications.

To this end, a new flag is introduced to the POSIX mmap()
system call. When the flag is specified, the PTEs within the

memory area are all LBA-augmented. During the mmap()
system call, the kernel checks whether a corresponding page

is in the OS page cache. If so, the page is linked in the PTE.

Otherwise, the kernel consults the file system to retrieve LBA

and records the LBA to the PTE with LBA bit set. When a

page belonging to the fast mmap() area is evicted from memory,

i) the LBA is updated to the PTE, ii) the PTE’s present bit is

cleared, and iii) LBA bit is set.

Such the LBA augmentation leads to a potential increase in

memory usage for the mmap() call compared to the original

kernel since the original kernel allocates a page for a page table

only after at least one of the PTEs in the page table is accessed.

However, in our scheme, memory spaces are allocated for the

whole page table since all PTEs are populated to store either

PFN or LBA. However, the space overhead of PTE for each

1108

TABLE I
DESCRIPTIONS OF PTE, PMD AND PUD STATUS ACCORDING TO THE VALUES OF PRESENT AND LBA BITS

Type LBA bit Present bit PFN field Description

PTE

0 0 0s Non-resident, not-LBA-augmented, page miss will-be-handled by OS
1 0 LBA Non-resident, LBA-augmented, page miss will-be-handled by hardware
1 1 PFN Resident, page miss is already handled by hardware, OS metadata is not updated yet
0 1 PFN Resident, identical to conventional PTEs

PUD or 0 X PFN of next- No PTE in the last-level page table(s) requires OS metadata update
PMD entry 1 X level table Last-level page table(s) has one or more PTEs whose associated OS metadata is not updated

4KB page is limited to 0.2% (i.e., 128MB for a 64GB file). In

addition, in a case where most of the memory-mapped pages

are eventually accessed, this is not really an overhead since

most PTEs are eventually populated. The LBA augmentation

may also increase the latency of an mmap() call. However, this

latency increase is not significant since mmap() is usually in a

control path, which does not affect application performance. If

such overhead is a problem, the asynchronous population of

PTEs [17] can be applied to alleviate this overhead.

When the block mapping of a file is changed (e.g., file block

updates on copy-on-write or log-structured file system [11],

[61]), the changed block location should be reflected to its LBA-

augmented PTEs. To this end, when a file is mapped using LBA

augmentation, the file is marked. Then, whenever a file system

changes its block mapping, the routine also updates the LBA

field of the PTEs. LBA-augmented PTEs are reverted to normal

PTEs when a process forks as our scheme currently does not

support sharing of virtual pages across multiple address spaces.

We discuss this in greater detail in Section V.

C. Updating OS Metadata for Hardware-handled Page Misses

In conventional OS-based demand paging, the OS kernel

handles a page miss, and thus OS-managed metadata associated

with the handled page miss can be easily updated. However,

in hardware-based demand paging, a page miss is handled by

hardware without OS’s intervention. Accordingly, updating the

relevant OS-managed metadata becomes a nontrivial problem.

To address this problem, our approach introduces a kernel

thread (kpted) that runs in background and updates the relevant

OS-managed metadata for the hardware-handled page misses.

This thread periodically (e.g., every 1 second) scans page tables

that contain memory area mapping a file using the fast mmap().

If this thread finds a PTE having both LBA and present

bits set, it updates the relevant OS metadata for this PTE.

Specifically, it i) inserts the page to an LRU list for the page

replacement, ii) updates the metadata of the page, iii) adjusts

other related metadata (e.g., reverse mapping), iv) inserts the

page to the OS page cache if the page is shared, and so forth.

The kernel thread finally clears the LBA bit of the PTE to

indicate that this PTE’s relevant OS metadata is updated.

The PTE scanning cost can be substantial if the thread

needs to scan all PTEs in all fast mmap()’ed memory areas

in every period. However, not all PTEs require the update of

their relevant OS metadata. Some of them can be non-resident

in memory or serviced OS metadata updates before. For the

efficient retrieval of PTEs requiring metadata updates, the

kernel thread utilizes LBA bits in upper-level page tables (i.e.,

PUD and PMD) (explained in Section III-B). An LBA bit in

the upper-level entry indicates that its leaf page table(s) has one

or more PTEs of which page misses are handled in hardware,

hence requiring OS metadata updates. For example, if an LBA

bit of a PMD entry is set, the page table pointed by the entry

has one or more PTEs having hardware-handled page misses.

If an LBA bit of a PUD entry is set, the PMD pointed by the

PUD entry has entries whose LBA bit is set. This recursively

indicates the leaf page tables belonging to each PMD entry has

PTEs awaiting OS metadata updates. As a result, the kernel

thread can skip a bunch of PTEs if an upper-level entry has

LBA bit clear. In order to guarantee the scanning condition,

kpted clears the LBA bit of an upper-level entry (e.g., a PUD

entry or PMD entry) before inspecting the lower-level table

(PMD or last-level page table). Table I summarizes the possible

combinations of LBA and present bits in page table entries

and their semantics.

Since the OS metadata is updated asynchronously, they

should be carefully managed to prevent accesses to inconsistent

OS metadata. In our prototype, three system calls, msync(),

fsync(), and munmap(), are modified to update OS metadata

before their operations. For the munmap() system call, it

is required to prevent potential races between SMU’s page

miss handling and PTE unmapping. Before unmapping PTEs,

the kernel waits for the completion of all outstanding page

misses associated the PTEs to be unmapped. The actual

implementation may require an additional instruction (e.g.,

SMU barrier). Process termination naturally avoids the potential

races because it internally calls the modified munmap() for all

virtual memory areas of a terminating process.

D. Free Page Refill

As stated in Section III-C, when SMU detects a lack of free

pages in the free page queue, SMU makes MMU raise a page

fault exception. The OS’s page fault handler first handles the

fault, and then refills the free page queue if the queue is empty.

We overlap the refill operation with current device I/O time to

hide the latency of page refill operation as in AIOS [45].

This synchronous page refill, however, may increase the

number of OS-handled page misses, each of which experiences

longer latency than hardware-handled page misses. To reduce

the OS-handled cases, we run another kernel thread called

kpoold that periodically refills the free page queue. In our

experiment, the use of kpoold reduces the number of page

faults for the synchronous refill by 44.3–78.4%.

1109

V. DISCUSSION

Page Aliasing. PMSHR detects and coalesces duplicated page

misses to prevent page aliases, and it uses the PTE address as

the key to detect identical page misses. Hence, no page alias

is made in a multi-thread process running on multiple cores.

However, if multiple processes share the same file, the current

scheme cannot prevent page aliases. Thus, our scheme reverts

LBA-augmented PTEs to normal PTEs when a process forks.

The support for file mapping shared across multiple processes

is left as future work.

Long Latency I/O. Long-latency I/O operations can un-

necessarily occupy a logical core for a long time. Storage-

side queuing delays can be alleviated by using storage-side

I/O scheduling features (e.g., urgent priority in the NVMe

protocol [51]). However, If such a long read delay is caused

by device-internal limitations, a millisecond-scale delay is

unavoidable, thereby wasting a huge number of CPU cycles.

Many attempts have made to alleviate such long delays for

reads [35], [40], [72] because reads usually reside in a critical

path. However, if such long delays are still unavoidable, one

remedy is a timeout-based exception followed by context

switching by OS. This may save the wasted CPU cycles.

Prefetching Support. Our scheme currently does not consider

memory accesses having spatial locality. There exist workloads

taking benefits from prefetching (or readahead) [23], [46], [56],

[71]. Prefetching support in SMU is left for future work.

Huge Page Support. Supporting huge pages is possible but not

a first-class feature of our design. It is because the use of huge

pages for disk-backed files is not well supported in mainstream

OS/file systems due to their I/O traffic bloat for writeback [43]

and difficulties of the implementation [13]. The virtual memory

system in Linux does not support swapping at a huge page

granularity, either. However, the proposed scheme can be easily

extended to support huge pages. If a PMD holds a huge page

mapping, a huge page flag (e.g., PS bit in x86 [32]) is set. If this

flag is set, the LBA bit indicates whether an LBA-augmented

PTE is used or not; if not, the same bit indicates whether the

corresponding last-level page table contains hardware-handled

PTEs or not as described in Section IV-C.

Demand Paging Support for Anonymous Page. Our current

design only accelerates a major page fault which involves a

disk I/O. However, we believe the same architecture can be

extended to accelerate demand paging for anonymous pages

(e.g., stack and heap). Such anonymous pages trigger minor

faults at the first access to them. To accelerate minor faults,

we can reserve a pre-defined constant for the LBA field to

mark the first access and make SMU bypass I/O processing

when it meets the constant. Accelerating swap-in of anonymous

pages is straightforward. For swap-out of non-shared pages,

the OS kernel can update the LBA field with the LBA on swap

space and set the LBA bit of the corresponding PTE. Also, the

proposed design does not accelerate copy-on-write (CoW) as

shared pages among multiple processes are not supported.

Enforcing OS-level Resource Management Policy. The free

page queue in SMU is a global architectural context to make

TABLE II
EXPERIMENTAL CONFIGURATION

Server Dell R730
OS Ubuntu 16.04.6
Kernel Linux 4.9.30
CPU Intel Xeon E5-2640v3 2.8GHz 8 physical cores (HT)
Storage devices Samsung SZ985 800GB Z-SSD
Memory DDR4 32GB

it difficult to apply OS-level memory management policy

(e.g., page coloring [68], NUMA policy [44], or memory

cgroup [62]). One possible solution is to use per-core free page

queues to enforce a memory management policy independently

for each thread context. We leave this as future work.

Architecture and OS Dependency. The proposed design

primarily targets a 64-bit architecture with a hardware page

table walker. 32-bit architectures are not considered as a 32-

bit PTE is too small to support sufficient storage capacity. A

single NVMe command can read a block of up to 8KB without

using an additional PRP list. Thus, pages of 8KB or smaller

can be readily supported with the proposed hardware. The

support of larger pages (e.g., 64KB, 1MB, 2MB or 1GB page)

may require additional modifications to the proposed hardware,

which is currently not necessary due to lack of support for huge

page file mapping [13]. In addition, the proposed architectural

extensions are carefully designed to have no dependency to

any specific OS. Although our prototype is based on Linux, we

believe other OSs (e.g., FreeBSD) can also easily accommodate

the proposed hardware since they maintain similar metadata

for virtual memory and perform similar operations for demand

paging.

VI. EVALUATION

A. Experimental Setup

Methodology. Our architectural proposal requires thorough

evaluation not only in micro-architecture-level but also in end-

to-end system-level. We take a vertically integrated approach to

evaluating the proposed system by using a cycle-level simulator

and a real x86 machine.

We first measure the average page miss handling latency with

our hardware and OS extensions by running a micro-benchmark

FIO [24] with the mmap engine on a Gem5-based full system

simulator integrated with the SSD model [26]. We then take

off the device I/O time to obtain the average number of CPU

cycles spent in SMU and modified MMU per page fault, say,

T1. Then, we run the same benchmark with our modified OS

for SMU emulation (explained in the next paragraph) on a

real x86 machine (Table II) to measure the time cost of a

page fault in CPU cycles, excluding the device I/O time, say,

T2. This is the time from SQ doorbell access to the write of

a CQ entry by the device. The difference between the two

time costs (T2-T1) is the delta in CPU cycles between the

proposed hardware-based scheme and the software-emulated

SMU running on a real machine. To estimate the performance

gains from our proposed hardware we adjust the measurements

from the software-emulated SMU by applying the delta. This

1110

Fig. 11. Single page fault (a) breakdown compared to OS-based demand paging and (b) hardware-based demand paging timeline

approach conservatively estimates the performance of our

scheme if it were run with the proposed hardware and OS

extensions since the real workloads include contentions in

various system components and those are not excluded by the

time cost adjustment.

We compare this result with the vanilla, unmodified Linux

kernel. The readahead within file mmap area is disabled because

the readahead (i.e., page prefetch) results in performance

degradation for the workloads we tested. Throughout the

evaluation, the vanilla kernel is denoted as OSDP and our

scheme is denoted as HWDP.

OS Extension. To test the real-world workloads on the real

machine, we modify the original page fault handler in the Linux

kernel (version 4.9.30) for x86 as follows. At the early stage of

the fault handler, we insert a routine to check an LBA bit (bit

10 used). If set, the routine jumps to a function that emulates

the behaviors of storage management unit (SMU); checking and

inserting page miss status holding registers (PMSHR), issuing

an NVMe command. To emulate the behavior of the memory

bus monitoring, we utilize monitor/mwait instructions [50].

Once the NVMe I/O finishes and the interrupt is raised, the

modified interrupt handling routine touches the memory address

that the emulated SMU routine’s mwait instruction was waiting

for. At this point, the routine continues emulating the behaviors

of the storage management unit and eventually completes the

page miss handling.

B. Page Miss Latency Analysis

Figure 11 shows the breakdown and timeline of single page

miss handling latency using the cycle-accurate simulator. We

refer to the part before disk I/O time as before device I/O and

the latter part as after device I/O. Because of the disparity

between the simulator’s device I/O time and a device I/O time

in a real machine, we use the value of the host device time

in Figure 3. As shown in Figure 11(a), before device I/O and

after device I/O are decreased by 2.38μs and 6.16μs compared

to OSDP, respectively. Replacing kernel operations with the

custom hardware logic greatly reduces the latency overheads

to nano-second scale.

Figure 11(b) shows the timeline of actions for a single page

miss handling in HWDP. First, before device I/O happens, two

register writes and one lookup of content addressable memory

(CAM) takes, 1, 1, 5 cycles, respectively. Memory write

Fig. 12. Demand paging performance (4KB read latency) with varying the
number of threads

for writing an NVMe command is the most time-consuming

operation, 77.16ns. A single PCIe register write takes 1.60ns.

In addition, a memory access needs to happen to fetch a free

page; however, we prefetch the free page entries for the future

accesses during the device I/O time to hide this memory latency.

After the device I/O, the most time-consuming operation is

reading and updating the three entries (PTE, PMD and PUD

entries). We observe that these accesses rarely miss the CPU’s

last level cache (LLC), and thus assume these operations take

97 cycles (i.e., three LLC reads and writes). I/O completion

(2 cycles) is a register operation. Finally, SMU notifies MMU

including bus access and completion checking (2 cycles).

C. Application Performance

This section reports the end-to-end performance of the

proposed scheme on the real x86 machine.

Parameter Configuration. In this evaluation, the depth of the

free page queue is configured to 4096 (16 MB of memory,

256 pages/core) which is 0.05% of total memory. The period

of kpoold is 4 milliseconds. Hence, kpoold refills pages at a

rate of 250 MB/s, which is similar to the bandwidth of 4KB

random read using a single thread.

The period of kpted may affect the page replacement policy

and is set to one second in our test. We believe that the

one second period does not affect OS’s page replacement

policy because the Linux kernel adopts a variant of clock

algorithm [25], and our physical memory requires at least 10

seconds to rotate the whole pages in the LRU list; 32 GB

physical memory with 3GB/s of read bandwidth of the SSD.

Demand Paging Latency. First, we measure the demand

paging performance and depict the results in Figure 12. The

FIO benchmark with mmap engine [24] is used to measure

1111

Fig. 13. Throughput improvement by HWDP over OSDP with varying the number of threads

the performance of demand paging. The workload repeatedly

accesses 4GB memory-mapped file randomly so as to incur

cold page misses. As shown in the figure, our hardware-based

demand paging outperforms the traditional OS-based demand

paging; reducing the latency by up to 37.0%.

The single thread environment shows the lowest latency,

and as parallelism increases, the latency gap compared to

OSDP becomes smaller. With eight threads, hence using all

the physical cores, the latency gain is reduced to 27.0%.

Realistic Workloads. Then, we measure the performance im-

pact of our scheme through several types of realistic workloads.

We tested three workloads: FIO with mmap engine to expose

application-perceived demand paging performance, DBBench

readrandom [21] on RocksDB NoSQL store [60] to test general

key-value store performance, and YCSB workloads [18] on

RocksDB to test the performance key-value stores in the cloud.

For all the workloads, the dataset size is configured to 64GB,

which is unable to fit in 32GB physical memory. For the

DBBench workload, we conduct four million operations of

record size 4KB. The YCSB workloads are configured to run

64GB of dataset and execute 32 million operations of record

size 4KB (128 GB of data access footprint in total).

Figure 13 shows the throughput gain by HWDP over OSDP

in the three workloads. The results can be summarized as

follows. First, access pattern affects the performance. FIO and

DBBench workloads achieved the biggest performance gain,

29.4%–57.1%. This is because their memory access pattern is

uniform. In contrast, the YCSB workloads follow the realistic

access patterns so the performance gain is reduced to 5.3%–

27.3%. The maximum performance gain among the YCSB

workloads is achieved with YCSB-C (up to 27.3%) because

this is a read-only workload. Other workloads have read+write

or read-modify-write access patterns. Hence, the workloads

show higher read I/O latency than read-only workloads due to

contention caused by writes in the SSD. As the read I/O latency

increases, the portion of the reduced latency by our scheme

becomes smaller, hence yielding lower performance gains.

Finally, as the number of thread increases, the performance

improvement is slightly reduced for two different reasons. First,

a read latency gets higher with more threads because of the

increased number of write I/Os by the increased number of

threads. This has especially happened in the YCSB-A and

YCSB-D workloads. Second, FIO and DBBench show the

decrease in performance improvement with 4 or 8 threads

Fig. 14. (a) Normalized throughput and (b) normalized user-level IPC and
user-level microarchitectural events in the YCSB-C workload with four threads

because of the increased contention in page tables and PMSHR;

we believe this is due to the limitation of our software-based

model as PMSHR is organized not into registers in SMU but

into a memory table, which incurs cache line contention with

a large number of threads.

Architectural Resource Pollution. To verify whether the

proposed scheme is effective in reducing architectural resource

pollution by frequent OS intervention, we measured several

user-level architectural events and depict the results in Figure 14.

We used the hardware performance monitoring unit [32] and

measured architectural events in the YCSB-C workload using

four threads.

As shown in the figure, our scheme shows improved user-

level IPC by 7.0% as compared to OSDP. This is because

frequent OS intervention is mostly eliminated. In this workload,

99.9% of page faults are replaced to the hardware-based page

miss handling. The figure also depicts the number of miss

events on caches and branch prediction, and most of the miss

events are decreased. We believe that this result indicates

architectural resources are not polluted by OS context [66].

Kernel Costs. Figure 15 shows the number of instructions

and CPU cycles spent by the kernel context while running the

same YCSB-C workload using four threads. The results of

HWDP includes the instructions and cycles spent by the two

background kernel threads, kpted and kpoold. Hence, the kernel
in the figure denotes kernel contexts in the application thread.

As shown in the figure, a total 62.6% of retired instructions

are reduced in HWDP. The reasons are twofold: first, the

block layer is removed in HWDP and second, the batched OS

metadata update efficiently utilizes instructions. The reduction

in the number of CPU cycles stays similar to the reduction

in the number of instructions. However, the number of CPU

1112

Fig. 15. The number of kernel-level retired instructions and CPU cycles in
the YCSB-C workload with four threads

Fig. 16. Normalized throughput of FIO (a), throughput of user- and kernel-
level instructions of FIO (b), and normalized user-level IPC of workloads in
SPEC CPU 2017 [20] (c)

cycles for kpted is reduced due to its batching of OS metadata

update operations.

Polling vs. Context Switching. In HWDP, a pipeline stalls

when it misses a page. The core may continue to run a few more

instructions having no dependency on the stalled instruction.

Nevertheless, the thread context may reach to waiting for the

stalled pipeline. Hence, the resources (e.g., functional units)

Fig. 17. Benefits of hardware support

of the core stay idle for a device I/O time. In contrast, OSDP

performs context switching during I/O waiting. So, the CPU

resources can be utilized during a device I/O time if there is a

thread to be scheduled.

However, when our scheme collaborates with simultaneous

multi-threading (SMT), the wastage of CPU resources can be

greatly reduced and efficiency becomes even better than OSDP.

To verify this argument, we configured an experiment as follows.

We run two threads, one I/O-bound thread (FIO) and one CPU-

bound thread (from the SPEC CPU 2017 benchmark [20]).

Each thread is pinned to one of the logical cores sharing one

physical core; our testbed supports two hardware threads in

each physical core. We ran the two workloads for 30 seconds

and collect the following results: throughput of FIO, the number

of instructions executed by FIO, and the number of instructions

executed by the SPEC thread. Figure 16 shows the three results.

As shown in the figure, in all the cases, HWDP outperforms

OSDP. First, HWDP shows more than 1.72× performance

improvement over OSDP (Figure 16(a)). Second, each SPEC

workload shows higher IPC with HWDP than that with OSDP

(Figure 16(c)). In summary, HWDP shows improved throughput

of the two co-running workloads in all the cases. The reasons

can be explained using Figure 16(b). First, demand paging

performance of HWDP is higher than OSDP, so the FIO thread

shows improved throughput with HWDP. In Figure 16(b), we

can see that FIO executes more user-level instructions with

HWDP than with OSDP. Because of the fast demand paging of

HWDP, FIO can quickly issue the subsequent demand paging

request. Second, the FIO thread with HWDP leaves more CPU

resources available to the co-located hardware thread than that

with OSDP. In Figure 16(b), the total number of instructions

executed by the FIO thread with HWDP is always smaller than

that with OSDP by up to 42.4%. Hence, the remaining issue

slots and functional units can be utilized by the co-running

SPEC thread. As a result, the co-running SPEC thread with

HWDP can retire more instructions than that with OSDP.

Software-only vs. Hardware Support. Figure 17 quantifies

the performance gains from hardware support by comparing

the performance of our fast software-only implementation

described in Section VI-A (SW-only) and the proposed design

(HWDP). The figure reports the single-fault latency of both

schemes normalized to the software-only implementation using

three different fast block devices: Z-SSD [64], Optane SSD [31],

and Optane DC PMM (used as a storage device in App-direct

mode) [29]. It also reports the measured device time for a

4KB read on the three devices, ranging from 2.1μs (Optane

1113

DC PMM) to 10.9μs (Z-SSD). Compared to our fast software-

only implementation leveraging LBA-augmented PTEs, HWDP

achieves substantial reduction of the page fault latency, and

the benefits of using the hardware are more pronounced as the

device time gets shorter. For Z-SSD which is the slowest of

the three HWDP has 14% lower latency than the software-only

implementation. However, for Optane DC PMM whose device

time is only around 2μs, HWDP has only about a half of the

latency (44% reduction). Thus, the hardware support becomes

more important as the device time continues to scale down

with the introduction of faster non-volatile memory devices

and higher-performing storage interfaces.

D. Area Overhead

We utilize McPAT [27] to coarsely estimate the area overhead

of SMU. We use the SRAM and register models in the McPAT

CPU model for area estimation of SMU. The die size of the

target processor, Intel Xeon E5-2640 v3 at a 22nm technology,

is 354mm2 [12], and the total area of the SMU is 0.014mm2

(0.004% of the processor), which is a negligible fraction of

the processor die size. Our PMSHR has a total of 32 entries,

and the size of each entry is 300 bits (three 64-bit addresses,

a 64-bit PFN, a 41-bit LBA, and a 3-bit device ID). Since

the PMSHR is a fully associative CAM structure, it accounts

for 87.6% of the SMU area. In addition, the SMU has eight

352-bit registers for NVMe device control, and they account

for 6.7% of the SMU area. The prefetch buffer (16 entries of

<PFN, DMA address> pair) accounts for 3.7% of the SMU

area. The other miscellaneous registers occupy the remaining

2.0% of the area.

VII. RELATED WORK

Memory-mapped File I/O Optimization on SSDs. To meet

the ever-increasing demand for memory capacity from data-

intensive applications, optimizing memory-mapped file I/O is

an important research issue. SSDAlloc and Chameleon [7], [8]

are among the first attempts to expand the DRAM capacity

using an SSD with providing low latency page access. They use

an address translation module that translates a virtual memory

address to the location on the SSD. FlatFlash [1] proposes

a lightweight page promotion mechanism using a promotion

lookaside buffer that manages hot-cold pages using a byte-

addressable SSD. FlashMap [28] mitigates the overheads of

the three-stage address translation between memory, storage,

and device-level indirection by proposing a unified address.

These studies still do not eliminate the OS-handling overhead,

which is no longer lightweight with ultra-low latency SSDs.

However, our scheme efficiently reduces the overhead with

new architecture and OS extension.

Reducing I/O Latency for Ultra-low Latency SSDs. User-

level I/O drivers [30], [39], [53], [59], file systems [38], [42]

and hybrid approaches [15] are proposed to provide a user-

level direct access to an SSD to achieve low I/O latency. These

approaches can deliver an I/O to an application in a low latency

because of the elimination of high-overhead kernel I/O from the

I/O path. However, they require to transfer the full control of

an SSD to a user program [30], [39], [53] or extend a storage

interface [15] to provide safe user-level access [59]. There

also exist studies to optimize the high-overhead kernel I/O

stack [45], [65]. Their approaches, however, are contained only

to software. DC-express [70] alleviates storage protocol-level

overheads. DevFS [36] implements a file system inside an SSD

and provides APIs to directly access a DevFS-enabled SSD

with minimized OS-level overheads. FlashShare [74] proposes

a new I/O submission/completion hardware with OS support.

However, its hardware support is limited to I/O submission and

completion. In contrast to these related studies, our scheme

focuses on the modification of CPU architecture to mostly

eliminate page fault exceptions and to provide low latency

storage access during demand paging.

Reducing Page Table Walker Latency. Prior research sug-

gests a number of new mechanisms to boost page fault

handling [9], [10], [23], [47]. SPAN [23] proposes page

prefetching that records and replays the access pattern of

pages. ASAP [47] reduces the latency of page table walk by

prefetching page table entries from the last two-level page tables

and by concurrently checking the entries with top-level page

tables. Tempo [10] suggests enabling the memory controller to

complete the translation in-place, so as to immediately prefetch

the data for which the address translation is being carried out.

These optimizations can be seamlessly combined with our

work, which would further reduce the page fault latency.

VIII. CONCLUSION

This paper proposes architectural extensions and OS supports

to demonstrate a case for hardware-based demand paging. Two

novel hardware extensions are proposed: i) LBA-augmented

page table and ii) storage management unit (SMU), and the OS

acts as a control plane of the extended hardware components.

As a result, the data path of demand paging is handled mostly

in hardware with a near-disk access time. The modified OS

kernel supports the proposed hardware components; frequent

intervention by OS page fault handler is mostly eliminated, and

its tasks are detached from the critical path and are batched in

background. The proposed scheme is tested using a vertically

integrated evaluation approach; using a cycle-accurate simulator

to verify the architectural extensions and a real x86 machine

to demonstrate the end-to-end performance of the proposed

system. The performance evaluation with real-world workloads

shows that the proposed scheme improves the performance

as well as the user-level IPC of the workloads. We hope that

our work vitalizes the memory hierarchy research with the

ever-shrinking performance gap between disk and CPU.

ACKNOWLEDGMENT

We thank the anonymous reviewers for their valuable com-

ments. This work was supported by Samsung Research Funding

& Incubation Center of Samsung Electronics under Project

Number SRFC-IT1702-05. Jinkyu Jeong is the corresponding

author.

1114

REFERENCES

[1] A. Abulila, V. S. Mailthody, Z. Qureshi, J. Huang, N. S. Kim, J. Xiong,
and W.-m. Hwu, “FlatFlash: Exploiting the byte-accessibility of SSDs
within a unified memory-storage hierarchy,” in Proceedings of the
Twenty-Fourth International Conference on Architectural Support for
Programming Languages and Operating Systems. ACM, 2019, pp.
971–985.

[2] “Apache HTTP server,” https://httpd.apache.org.
[3] “Apache Spark,” https://spark.apache.org/.
[4] Apple developer, “File system advanced programming topics:

Mapping files into memory,” https://developer.apple.com/library/archive/
documentation/FileManagement/Conceptual/FileSystemAdvancedPT/
MappingFilesIntoMemory/MappingFilesIntoMemory.html#//apple_ref/
doc/uid/TP40010765-CH2-SW1.

[5] Apple developer, “File system programming guide: Performance
tips,” https://developer.apple.com/library/archive/documentation/
FileManagement/Conceptual/FileSystemProgrammingGuide/
PerformanceTips/PerformanceTips.html#//apple_ref/doc/uid/
TP40010672-CH7-SW1.

[6] R. H. Arpaci-Dusseau and A. C. Arpaci-Dusseau, Operating systems:
Three easy pieces. Arpaci-Dusseau Books LLC, 2018.

[7] A. Badam and V. S. Pai, “SSDAlloc: hybrid SSD/RAM memory
management made easy,” in Proceedings of the 8th USENIX conference on
Networked Systems Design and Implementation. USENIX Association,
2011, pp. 211–224.

[8] A. Badam, V. S. Pai, and D. W. Nellans, “Better flash access via shape-
shifting virtual memory pages,” in Proceedings of the First ACM SIGOPS
Conference on Timely Results in Operating Systems. ACM, 2013, pp.
3:1–3:14.

[9] T. W. Barr, A. L. Cox, and S. Rixner, “SpecTLB: A mechanism for
speculative address translation,” in Proceedings of the 38th Annual
International Symposium on Computer Architecture. IEEE Press, 2011,
pp. 307–317.

[10] A. Bhattacharjee, “Translation-triggered prefetching,” in Proceedings of
the Twenty-Second International Conference on Architectural Support
for Programming Languages and Operating Systems. ACM, 2017, pp.
63–76.

[11] J. Bonwick and B. Moore, “Zfs: The last word in file systems,” 2007.
[12] B. Bowhill, B. Stackhouse, N. Nassif, Z. Yang, A. Raghavan, O. Mendoza,

C. Morganti, C. Houghton, D. Krueger, O. Franza et al., “The xeon®
processor e5-2600 v3: A 22 nm 18-core product family,” IEEE Journal
of Solid-State Circuits, vol. 51, no. 1, pp. 92–104, 2015.

[13] N. Brown, “Transparent huge pages in the page cache,” https://lwn.net/
Articles/686690/, 2016.

[14] R. E. Bryant and O. David Richard, Computer systems: a programmer’s
perspective 3rd edition. Pearson Education, 2015.

[15] A. M. Caulfield, T. I. Mollov, L. A. Eisner, A. De, J. Coburn, and
S. Swanson, “Providing safe, user space access to fast, solid state
disks,” in Proceedings of the Seventeenth International Conference
on Architectural Support for Programming Languages and Operating
Systems. ACM, 2012, pp. 387–400.

[16] W. Cheong, C. Yoon, S. Woo, K. Han, D. Kim, C. Lee, Y. Choi, S. Kim,
D. Kang, G. Yu, J. Kim, J. Park, K. Song, K. Park, S. Cho, H. Oh,
D. D. G. Lee, J. Choi, and J. Jeong, “A flash memory controller for
15μs ultra-low-latency ssd using high-speed 3d nand flash with 3μs read
time,” in 2018 IEEE International Solid - State Circuits Conference -
(ISSCC), Feb 2018, pp. 338–340.

[17] J. Choi, J. Kim, and H. Han, “Efficient memory mapped file I/O for
in-memory file systems,” in Proceedings of the 9th USENIX Conference
on Hot Topics in Storage and File Systems. USENIX Association, 2017,
p. 5.

[18] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears,
“Benchmarking cloud serving systems with YCSB,” in Proceedings of the
1st ACM Symposium on Cloud Computing. ACM, 2010, pp. 143–154.

[19] J. Corbet, “Five-level page tables,” https://lwn.net/Articles/717293/, 2017.
[20] S. P. E. Corporation, “SPEC CPU 2017,” https://www.spec.org/cpu2017/,

2017.
[21] “RocksDB benchmarking tool,” https://github.com/facebook/rocksdb/

wiki/Benchmarking-tools.
[22] S. R. Dulloor, S. Kumar, A. Keshavamurthy, P. Lantz, D. Reddy,

R. Sankaran, and J. Jackson, “System software for persistent memory,”
in Proceedings of the Ninth European Conference on Computer Systems.
ACM, 2014.

[23] V. Fedorov, J. Kim, M. Qin, P. V. Gratz, and A. L. N. Reddy, “Speculative
paging for future NVM storage,” in Proceedings of the International
Symposium on Memory Systems. ACM, 2017, pp. 399–410.

[24] “Flexible I/O tester,” https://github.com/axboe/fio, 2016.
[25] M. Gorman, Understanding the Linux virtual memory manager. Prentice

Hall Upper Saddle River, 2004.
[26] D. Gouk, M. Kwon, J. Zhang, S. Koh, W. Choi, N. S. Kim, M. Kandemir,

and M. Jung, “Amber: Enabling precise full-system simulation with
detailed modeling of all SSD resources,” in Proceedings of the 51st
Annual IEEE/ACM International Symposium on Microarchitecture. IEEE
Press, 2018, pp. 469–481.

[27] Hewlett Packard, “McPAT,” https://github.com/HewlettPackard/mcpat.
[28] J. Huang, A. Badam, M. K. Qureshi, and K. Schwan, “Unified address

translation for memory-mapped SSDs with FlashMap,” in Proceedings
of the 42nd Annual International Symposium on Computer Architecture.
ACM, 2015, pp. 580–591.

[29] Intel, “Intel Optane DC persistent memory,” https://www.intel.com/
content/www/us/en/products/memory-storage/optane-dc-persistent-
memory.html.

[30] Intel, “Storage Performance Development Kit,” http://www.spdk.io/.
[31] Intel, “Intel Optane SSD DC P4800X/P4801X,” https:

//www.intel.com/content/dam/www/public/us/en/documents/product-
briefs/optane-ssd-dc-p4800x-p4801x-brief.pdf, 2018.

[32] Intel, “Intel 64 and ia-32 architectures software developer’s man-
ual,” https://software.intel.com/sites/default/files/managed/39/c5/325462-
sdm-vol-1-2abcd-3abcd.pdf, 2019.

[33] Intel and Micron, “A revolutionary breakthrough in memory technol-
ogy,” http://investors.micron.com/static-files/7b934cfe-139c-4a6f-93e5-
b86240642351.

[34] J. Izraelevitz, J. Yang, L. Zhang, J. Kim, X. Liu, A. Memaripour, Y. J.
Soh, Z. Wang, Y. Xu, S. R. Dulloor, J. Zhao, and S. Swanson, “Basic
performance measurements of the intel optane DC persistent memory
module,” 2019.

[35] W. Kang and S. Yoo, “Dynamic management of key states for reinforce-
ment learning-assisted garbage collection to reduce long tail latency in
ssd,” in Proceedings of the 55th Annual Design Automation Conference.
ACM, 2018, pp. 8:1–8:6.

[36] S. Kannan, A. C. Arpaci-Dusseau, R. H. Arpaci-Dusseau, Y. Wang, J. Xu,
and G. Palani, “Designing a true direct-access file system with DevFS,”
in Proceedings of the 16th USENIX Conference on File and Storage
Technologies. USENIX Association, 2018, pp. 241–256.

[37] M. Kerrisk, The Linux programming interface: a Linux and UNIX system
programming handbook. No Starch Press, 2010.

[38] H. Kim and J. Kim, “A user-space storage I/O framework for NVMe
SSDs in mobile smart devices,” Proceedings of the IEEE Transactions
on Consumer Electronics, vol. 63, no. 1, pp. 28–35, 2017.

[39] H.-J. Kim, Y.-S. Lee, and J.-S. Kim, “NVMeDirect: A user-space I/O
framework for application-specific optimization on NVMe SSDs,” in
Proceedings of the 8th USENIX Workshop on Hot Topics in Storage and
File Systems. USENIX Association, 2016.

[40] S. Kim, J. Bae, H. Jang, W. Jin, J. Gong, S. Lee, T. J. Ham, and J. W. Lee,
“Practical erase suspension for modern low-latency ssds,” in Proceedings
of the 2019 USENIX Annual Technical Conference. USENIX Association,
2019, pp. 813–820.

[41] D. Kroft, “Lockup-free instruction fetch/prefetch cache organization,”
in 25 years of the international symposia on Computer architecture
(selected papers), 1998, pp. 195–201.

[42] Y. Kwon, H. Fingler, T. Hunt, S. Peter, E. Witchel, and T. Anderson,
“Strata: A cross media file system,” in Proceedings of the 26th Symposium
on Operating Systems Principles. ACM, 2017, pp. 460–477.

[43] Y. Kwon, H. Yu, S. Peter, C. J. Rossbach, and E. Witchel, “Coordinated
and efficient huge page management with ingens,” in Proceesings
of the 12th USENIX Symposium on Operating Systems Design and
Implementation. USENIX Association, 2016, pp. 705–721.

[44] C. Lameter, “Numa (non-uniform memory access): An overview,”
Queue, vol. 11, no. 7, p. 40–51, Jul. 2013. [Online]. Available:
https://doi.org/10.1145/2508834.2513149

[45] G. Lee, S. Shin, W. Song, T. J. Ham, J. W. Lee, and J. Jeong,
“Asynchronous I/O stack: A low-latency kernel I/O stack for ultra-low
latency SSDs,” in Proceedings of the 2019 USENIX Annual Technical
Conference. USENIX Association, 2019, pp. 603–616.

[46] J. Lee, H. Kim, and R. Vuduc, “When prefetching works, when it doesn’t,
and why,” ACM Trans. Archit. Code Optim., vol. 9, no. 1, pp. 2:1–2:29,
2012.

1115

[47] A. Margaritov, D. Ustiugov, E. Bugnion, and B. Grot, “Prefetched address
translation,” in Proceedings of the 52nd Annual IEEE/ACM International
Symposium on Microarchitecture. ACM, 2019, pp. 1023–1036.

[48] J. C. Mogul, A. Baumann, T. Roscoe, and L. Soares, “Mind the gap:
Reconnecting architecture and os research,” in Proceedings of the 13th
USENIX Conference on Hot Topics in Operating Systems. USENIX
Association, 2011, pp. 1–1.

[49] “MongoDB,” https://www.mongodb.org.
[50] “Linux mwait,” https://github.com/torvalds/linux/blob/master/arch/x86/

include/asm/mwait.h, 2019.
[51] “NVM express,” https://nvmexpress.org.
[52] “NVM express overview,” https://www.nvmexpress.org/wp-content/

uploads/NVMe_Overview.pdf.
[53] “OpenMPDK,” https://github.com/OpenMPDK/uNVMe.
[54] O. Patil, L. Ionkov, J. Lee, F. Mueller, and M. Lang, “Performance

characterization of a DRAM-NVM hybrid memory architecture for HPC
applications using intel optane DC persistent memory modules,” in
Proceedings of the International Symposium on Memory Systems. ACM,
2019, p. 288–303.

[55] D. A. Patterson and J. L. Hennessy, Computer organization and design.
Newnes, 2013.

[56] R. H. Patterson, G. A. Gibson, E. Ginting, D. Stodolsky, and J. Zelenka,
“Informed prefetching and caching,” in Proceedings of the Fifteenth ACM
Symposium on Operating Systems Principles. ACM, 1995, pp. 79–95.

[57] R. Pearce, M. Gokhale, and N. M. Amato, “Multithreaded asynchronous
graph traversal for in-memory and semi-external memory,” in Proceedings
of the 2010 ACM/IEEE International Conference for High Performance
Computing, Networking, Storage and Analysis, Nov 2010, pp. 1–11.

[58] R. Pearce, M. Gokhale, and N. M. Amato, “Faster parallel traversal of
scale free graphs at extreme scale with vertex delegates,” in Proceedings
of the International Conference for High Performance Computing,
Networking, Storage and Analysis. IEEE Press, 2014, p. 549–559.

[59] S. Peter, J. Li, I. Zhang, D. R. K. Ports, D. Woos, A. Krishnamurthy,
T. Anderson, and T. Roscoe, “Arrakis: The operating system is the control
plane,” ACM Trans. Comput. Syst., vol. 33, no. 4, pp. 11:1–11:30, Nov.
2015.

[60] “RocksDB,” https://github.com/facebook/rocksdb.
[61] O. Rodeh, J. Bacik, and C. Mason, “Btrfs: The linux b-tree filesystem,”

ACM Trans. Storage, vol. 9, no. 3, Aug. 2013.
[62] R. Rosen, “Resource management: Linux kernel namespaces and cgroups,”

Haifux, May, vol. 186, 2013.

[70] D. Vučinić, Q. Wang, C. Guyot, R. Mateescu, F. Blagojević, L. Franca-
Neto, D. L. Moal, T. Bunker, J. Xu, S. Swanson, and Z. Bandić, “DC
express: Shortest latency protocol for reading phase change memory over
PCI express,” in Proceedings of the 12th USENIX Conference on File
and Storage Technologies. USENIX Association, 2014, pp. 309–315.

[63] Samsung, “Ultra-Low Latency with Samsung Z-NAND SSD,”
https://www.samsung.com/semiconductor/global.semi.static/Ultra-
Low_Latency_with_Samsung_Z-NAND_SSD-0.pdf, 2017.

[64] Samsung, “Samsung Z-SSD SZ985,” https://www.samsung.
com/semiconductor/global.semi.static/Brochure_Samsung_S-
ZZD_SZ985_1804.pdf, 2018.

[65] W. Shin, Q. Chen, M. Oh, H. Eom, and H. Y. Yeom, “OS I/O path
optimizations for flash solid-state drives,” in Proceedings of the 2014
USENIX Annual Technical Conference. USENIX Association, 2014, pp.
483–488.

[66] L. Soares and M. Stumm, “FlexSC: Flexible system call scheduling
with exception-less system calls,” in Proceedings of the 9th USENIX
Conference on Operating Systems Design and Implementation. USENIX
Association, 2010, pp. 33–46.

[67] N. Y. Song, Y. Son, H. Han, and H. Y. Yeom, “Efficient memory-mapped
I/O on fast storage device,” ACM Trans. Storage, vol. 12, no. 4, pp.
19:1–19:27, May 2016.

[68] G. Taylor, P. Davies, and M. Farmwald, “The tlb slice—a low-cost
high-speed address translation mechanism,” in Proceedings of the 17th
Annual International Symposium on Computer Architecture, ser. ISCA
’90. New York, NY, USA: Association for Computing Machinery, 1990,
p. 355–363. [Online]. Available: https://doi.org/10.1145/325164.325161

[69] J. Tuck, L. Ceze, and J. Torrellas, “Scalable cache miss handling for high
memory-level parallelism,” in 2006 39th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO’06). IEEE, 2006, pp. 409–
422.

[71] F. Wu, H. Xi, J. Li, and N. Zou, “Linux readahead: less tricks for more,”
in Proceedings of the Linux Symposium, vol. 2. Citeseer, 2007, pp.
273–284.

[72] S. Yan, H. Li, M. Hao, M. H. Tong, S. Sundararaman, A. A. Chien,
and H. S. Gunawi, “Tiny-tail flash: Near-perfect elimination of garbage
collection tail latencies in NAND ssds,” in Proceedings of the 15th
USENIX Conference on File and Storage Technologies. USENIX
Association, 2017, pp. 15–28.

[73] T. Yoshimura, T. Chiba, and H. Horii, “EvFS: User-level, event-driven
file system for non-volatile memory,” in 11th USENIX Workshop on Hot
Topics in Storage and File Systems. USENIX Association, 2019.

[74] J. Zhang, M. Kwon, D. Gouk, S. Koh, C. Lee, M. Alian, M. Chun,
M. T. Kandemir, N. S. Kim, J. Kim, and M. Jung, “Flashshare: Punching
through server storage stack from kernel to firmware for ultra-low latency
ssds,” in Proceedings of the 13th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 18). USENIX Association,
2018, pp. 477–492.

1116

